View More View Less
  • 1 Természettudományi Kutatóközpont, Agyi Képalkotó Központ, , Budapest, Magyarország; Research Centre for Natural Sciences, Brain Imaging Centre, , Budapest, Hungary
  • | 2 Budapesti Műszaki és Gazdaságtudományi Egyetem, Kognitív Tudományi Tanszék, , Budapest, Magyarország; Budapest University of Technology and Economics, Department of Cognitive Science, , Budapest, Hungary
Open access

Összefoglaló. Az elmúlt évtizedekben a várható élettartam emelkedésével drámai mértékben nőtt a demencia előfordulásának gyakorisága, melynek hátterében leggyakrabban az Alzheimer-kór áll. A rendkívül ígéretes, biomarkereken, agyi képalkotáson és mesterséges intelligencián alapuló megközelítéseknek köszönhetően egyre szélesebb körű információink vannak a betegség kialakulásáról és lefolyásáról, új kapukat nyitva ezzel a demencia korai diagnózisa és a személyre szabott terápia felé. Míg az új kutatási irányzatok előnye vitathatatlan, a nagy mennyiségű kutatási adat kezelése, illetve a betegség korai szakaszban történő azonosítása több biztonsági kérdést felvet. A korai diagnózis mellett egyre nagyobb hangsúly helyeződik az intervencióra, a demenciára hajlamosító tényezőkbe történő beavatkozás által.

Summary. As a consequence of increasing life expectancy, the number of those living with dementia is rising. While Alzheimer’s disease (AD) constitutes the most common cause of dementia, the origin of AD is unknown. Furthermore, in the absence of effective treatment, therapy focuses on the cognitive and behavioural symptoms of the disease, and the wellbeing of the patient. AD is characterised by a pronounced impairment experienced in one or more cognitive domains, and the criterion of the diagnosis is the presence of aggregated proteins in the brain leading to neuron death, and eventually to the loss of cognitive abilities.

As a result of the latest technological advances, several biological markers (biomarkers) of AD pathology were identified. The biomarkers can be obtained using positron emission tomography or measured from cerebrospinal fluid, and lately from blood serum and plasma as well. Magnetic resonance imaging provides an important measure of brain atrophy, a biomarker of neurodegeneration and neuronal injury. The structure of the brain shows significant alterations as a function of neuronal loss, with cortical thinning and tissue density changes, mainly starting from the medial temporal lobes (also including the hippocampus playing a prominent role in memory functions), and extending to the temporoparietal regions, with observed changes in the activity of the different functional brain networks as well.

A major challenge in defeating AD is that in most cases, the disease is recognised subsequent to the appearance of the decline in cognitive abilities, hampering everyday life. Previous studies identified a preclinical stage of AD, where the biomarkers indicative of the disease are present in the absence of detectable cognitive symptoms. This early, preclinical stage – with the use of artificial intelligence-based techniques – has been suggested to be a promising window for the early detection of the disease, and also for the prediction of individual disease trajectories, allowing for the thorough planning of patient management. While the benefit of the early diagnosis is unequivocal, it raises a number of important ethical and safety issues.

Besides the tremendous effort of developing effective medical treatments, the importance of intervention stands in the centre of scientific interest. The proposed prevention and intervention methods target the potentially modifiable risk factors of dementia, encouraging engagement in stimulating everyday activities and healthy lifestyle, to preserve longevity.

  • 1

    Aggarwal, N. T., Wilson, R. S., Beck, T. L., Bienias, J. L., & Bennett, D. A. (2006) Motor dysfunction in mild cognitive impairment and the risk of incident Alzheimer disease. Archives of Neurology, Vol. 63. No. 12. pp. 1763–1769.

  • 2

    Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., … Phelps, C. H. (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, Vol. 7. No. 3. pp. 270–279.

  • 3

    Al Mamun, A., Uddin, M. S., Kabir, M. T., Khanum, S., Sarwar, M. S., Mathew, B., … Ashraf, G. M. (2020) Exploring the promise of targeting ubiquitin-proteasome system to combat Alzheimer’s disease. Neurotoxicity Research, Vol. 38. No. 1. pp. 8–17.

  • 4

    Alzheimer’s Association. (2019) 2019 Alzheimer’s disease facts and figures. Alzheimer’s & dementia, Vol. 15. No. 3. pp. 321–387.

  • 5

    Antal, A., & Herrmann, C. S. (2016) Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plasticity, https://doi.org/10.1155/2016/3616807

  • 6

    Appell, J., Kertesz, A., & Fisman, M. (1982) A study of language functioning in Alzheimer patients. Brain and Language, Vol. 17. No. 1. pp. 73–91.

  • 7

    Arnsten, A. F., Datta, D., Del Tredici, K., & Braak, H. (2021) Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimer’s & Dementia, Vol. 17. No. 1. pp. 115–124.

  • 8

    Arvanitakis, Z., Shah, R. C., & Bennett, D. A. (2019) Diagnosis and Management of Dementia: Review. JAMA, Vol. 322. No. 16. 1589.

  • 9

    Ashton, N. J., Hye, A., Rajkumar, A. P., Leuzy, A., Snowden, S., Suárez-Calvet, M., … Aarsland, D. (2020) An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders. Nature Reviews Neurology, Vol. 16. No. 5. pp. 265–284.

  • 10

    Bahar‐Fuchs, A., Martyr, A., Goh, A. M., Sabates, J., & Clare, L. (2019) Cognitive training for people with mild to moderate dementia. Cochrane Database of Systematic Reviews, Vol. 3. No. 3.

  • 11

    Balsis, S., Carpenter, B. D., & Storandt, M. (2005) Personality change precedes clinical diagnosis of dementia of the Alzheimer type. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, Vol. 60. No. 2. pp. 98–101.

  • 12

    Bennett, D. A., Schneider, J. A., Arvanitakis, Z., Kelly, J. F., Aggarwal, N. T., Shah, R. C., & Wilson, R. S. (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology, Vol. 66. No. 12. pp. 1837–1844.

  • 13

    Bilgel, M., & Resnick, S. M. (2020) Amyloid Positivity as a Risk Factor for Memory Decline and Lower Memory Performance as an Indicator of Conversion to Amyloid Positivity: Chicken and Egg. Biological Psychiatry, Vol. 87. No. 9. pp. 782–784.

  • 14

    Braak, H., Thal, D. R., Ghebremedhin, E., & Del Tredici, K. (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. Journal of Neuropathology & Experimental Neurology, Vol. 70. No. 11. pp. 960–969.

  • 15

    Buss, S. S., Fried, P. J., & Pascual-Leone, A. (2019) Therapeutic noninvasive brain stimulation in Alzheimer’s disease and related dementias. Current Opinion in Neurology, Vol. 32. No. 2. 292.

  • 16

    Chandra, A., Dervenoulas, G., & Politis, M. (2019) Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. Journal of Neurology, Vol. 266. No. 6. pp. 1293–1302.

  • 17

    Chételat, G., Arbizu, J., Barthel, H., Garibotto, V., Law, I., Morbelli, S., … Drzezga, A. (2020) Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. The Lancet Neurology, Vol. 19. No. 11. pp. 951–962.

  • 18

    Cole, J. H., & Franke, K. (2017) Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends in Neurosciences, Vol. 40. No. 12. pp. 681–690.

  • 19

    Cullen, N. C., Leuzy, A., Palmqvist, S., Janelidze, S., Stomrud, E., Pesini, P., … Hansson, O. (2021) Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations. Nature Aging, Vol. 1. No. 1. pp. 114–123.

  • 20

    Dubois, B., Feldman, H. H., Jacova, C., Hampel, H., Molinuevo, J. L., Blennow, K., … Cummings, J. L. (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. The Lancet Neurology, Vol. 13. No. 6. pp. 614–629.

  • 21

    Ebenau, J. L., Timmers, T., Wesselman, L. M. P., Verberk, I. M. W., Verfaillie, S. C. J., Slot, R. E. R., … van der Flier, W. M. (2020) ATN classification and clinical progression in subjective cognitive decline: The SCIENCe project. Neurology, Vol. 95. No. 1. pp. e46–e58.

  • 22

    Elahi, F. M., & Miller, B. L. (2017) A clinicopathological approach to the diagnosis of dementia. Nature Reviews Neurology, Vol. 13. No. 8. 457.

  • 23

    Ellis, K. A., Bush, A. I., Darby, D., De Fazio, D., Foster, J., Hudson, P., … the AIBL Research Group (2009) The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: Methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. International Psychogeriatrics, Vol. 21. No. 4. pp. 672–687.

  • 24

    Fitten, L. J., Perryman, K. M., Wilkinson, C. J., Ganzell, S., Randolph Mervis, J., Little, R. J., … Malmgren, R. (1995) Alzheimer and Vascular Dementias and Driving: A Prospective Road and Laboratory Study. JAMA, Vol. 273. No. 17. pp. 1360–1365.

  • 25

    Fratiglioni, L., Marseglia, A., & Dekhtyar, S. (2020) Ageing without dementia: Can stimulating psychosocial and lifestyle experiences make a difference? The Lancet Neurology, Vol. 19. No. 6. pp. 533–543.

  • 26

    Garre-Olmo, J. (2018) Epidemiology of Alzheimer’s disease and other dementias. Revista de Neurologia, Vol. 66. No. 11. pp. 377–386.

  • 27

    Gauthier, S., Albert, M., Fox, N., Goedert, M., Kivipelto, M., Mestre-Ferrandiz, J., & Middleton, L. T. (2016) Why has therapy development for dementia failed in the last two decades?. Alzheimer’s & Dementia, Vol. 12. No. 1. pp. 60–64.

  • 28

    Giebel, C. M., Sutcliffe, C., & Challis, D. (2015) Activities of daily living and quality of life across different stages of dementia: a UK study. Aging & Mental Health, Vol. 19. No. 1. pp. 63–71.

  • 29

    Giorgio, J., Landau, S. M., Jagust, W. J., Tino, P., & Kourtzi, Z. (2020) Modelling prognostic trajectories of cognitive decline due to Alzheimer’s disease. NeuroImage: Clinical, Vol. 26, 102199.

  • 30

    Goetzl, E. J. (2020) Advancing medicine for Alzheimer’s disease: A plasma neural exosome platform. The FASEB Journal, Vol. 34. No. 10. pp. 13079–13084.

  • 31

    Grande, G., Qiu, C., & Fratiglioni, L. (2020) Prevention of dementia in an ageing world: Evidence and biological rationale. Ageing Research Reviews, Vol. 64, 101045.

  • 32

    Grober, E., Hall, C. B., Lipton, R. B., Zonderman, A. B., Resnick, S. M., & Kawas, C. (2008) Memory impairment, executive dysfunction, and intellectual decline in preclinical Alzheimer’s disease. Journal of the International Neuropsychological Society, Vol. 14. No. 2. pp. 266–278.

  • 33

    Hampel, H., O’Bryant, S. E., Molinuevo, J. L., Zetterberg, H., Masters, C. L., Lista, S., … Blennow, K. (2018) Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nature Reviews Neurology, Vol. 14. No. 11. pp. 639–652.

  • 34

    Herrmann, C.S., Rach, S., Neuling, T., Strüber, D. (2013) Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front. Human Neurosci., Vol. 7. No. 279.

  • 35

    Hodson, R. (2016) Precision medicine. Nature, Vol. 537. No. 7619.

  • 36

    Ienca, M., Vayena, E., & Blasimme, A. (2018) Big data and dementia: charting the route ahead for research, ethics, and policy. Frontiers in medicine, Vol. 5. No. 13.

  • 37

    Isaacson, R. S., Ganzer, C. A., Hristov, H., Hackett, K., Caesar, E., Cohen, R., … Krikorian, R. (2018) The clinical practice of risk reduction for Alzheimer’s disease: a precision medicine approach. Alzheimer’s & Dementia, Vol. 14. No. 12. pp. 1663–1673.

  • 38

    Isaacson, R. S., Hristov, H., Saif, N., Hackett, K., Hendrix, S., Melendez, J., … Krikorian, R. (2019) Individualized clinical management of patients at risk for Alzheimer’s dementia. Alzheimer’s & Dementia, Vol. 15. No. 12. pp. 1588–1602.

  • 39

    Jack, C. R., Albert, M. S., Knopman, D. S., McKhann, G. M., Sperling, R. A., Carrillo, M. C., … Phelps, C. H. (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, Vol. 7. No. 3. pp. 257–262.

  • 40

    Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., … Silverberg, N. (2018) NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, Vol. 14. No. 4. pp. 535–562.

  • 41

    Jessen, F., Amariglio, R. E., van Boxtel, M., Breteler, M., Ceccaldi, M., Chételat, G., … Wagner, M. (2014) A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer’s & Dementia, Vol. 10. No. 6. pp. 844–852.

  • 42

    Jessen, F., Wiese, B., Bachmann, C., Eifflaender-Gorfer, S., Haller, F., Kölsch, H., … Bickel, H. (2010) Prediction of dementia by subjective memory impairment effects of severity and temporal association with cognitive impairment. Archives of General Psychiatry, Vol. 67. No. 4. pp. 414–422.

  • 43

    Jonker, C., Geerlings, M. I., & Schmand, B. (2000) Are memory complaints predictive for dementia? A review of clinical and population-based studies. International Journal of Geriatric Psychiatry, Vol. 15. No. 11. pp. 983–991.

  • 44

    Kales, H. C., Gitlin, L. N., & Lyketsos, C. G. (2015) Assessment and management of behavioral and psychological symptoms of dementia. BMJ, 350.

  • 45

    Kivipelto, M., Mangialasche, F., & Ngandu, T. (2018) Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nature Reviews Neurology, Vol. 14. No. 11. pp. 653–666.

  • 46

    Kluger, A., Gianutsos, J. G., Golomb, J., Ferris, S. H., George, A. E., Franssen, E., & Reisberg, B. (1997) Patterns of Motor Impairment in Normal Aging, Mild Cognitive Decline, and Early Alzheimer’ Disease. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, Vol. 52B. No. 1. pp. 28–39.

  • 47

    Knopman, D. S., Parisi, J. E., Salviati, A., Floriach-Robert, M., Boeve, B. F., Ivnik, R. J., … Petersen, R. C. (2003) Neuropathology of Cognitively Normal Elderly. Journal of Neuropathology & Experimental Neurology, Vol. 62. No. 11. pp. 1087–1095.

  • 48

    Lamb, J. R., Jennings, L. L., Gudmundsdottir, V., Gudnason, V., & Emilsson, V. (2021) It’s in Our Blood: A Glimpse of Personalized Medicine. Trends in Molecular Medicine, Vol. 27. No. 1. pp. 20–30.

  • 49

    Licher, S., Ahmad, S., Karamujić-Čomić, H., Voortman, T., Leening, M. J., Ikram, M. A., & Ikram, M. K. (2019) Genetic predisposition, modifiable-risk-factor profile and long-term dementia risk in the general population. Nature Medicine, Vol. 25. No. 9. pp. 1364–1369.

  • 50

    Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., … Mukadam, N. (2020) Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet, Vol. 396. No. 10248. pp. 413–446.

  • 51

    López-de-Eguileta, A., Lage, C., López-García, S., Pozueta, A., García-Martínez, M., Kazimierczak, M., … Casado, A. (2020) Evaluation of choroidal thickness in prodromal Alzheimer’s disease defined by amyloid PET. Plos one, Vol. 15. No. 9. e0239484.

  • 52

    Marshall, G. A., Rentz, D. M., Frey, M. T., Locascio, J. J., Johnson, K. A., & Sperling, R. A. (2011) Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer’s disease. Alzheimer’s and Dementia, Vol. 7. No. 3. pp. 300–308.

  • 53

    McKeith, I., & Cummings, J. (2005) Behavioural changes and psychological symptoms in dementia disorders. The Lancet Neurology, Vol. 4. No. 11. pp. 735–742.

  • 54

    McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H., … Phelps, C. H. (2011) The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, Vol. 7. No. 3. pp. 263–269.

  • 55

    McWhirter, L., Ritchie, C., Stone, J., & Carson, A. (2020) Functional cognitive disorders: A systematic review. The Lancet Psychiatry, Vol. 7. No. 2. pp. 191–207.

  • 56

    Meszlényi, R. J., Buza, K., & Vidnyánszky, Z. (2017) Resting state fMRI functional connectivity-based classification using a convolutional neural network architecture. Frontiers in Neuroinformatics, Vol. 11.

  • 57

    Milà-Alomà, M., Suárez-Calvet, M., & Molinuevo, J. L. (2019) Latest advances in cerebrospinal fluid and blood biomarkers of Alzheimer’s disease. Therapeutic Advances in Neurological Disorders, Vol. 12. pp. 1–23.

  • 58

    Mitchell, A. J., Beaumont, H., Ferguson, D., Yadegarfar, M., & Stubbs, B. (2014) Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis. Acta Psychiatrica Scandinavica, Vol. 130. No. 6. 439–451.

  • 59

    Mitchell, A. J., & Shiri-Feshki, M. (2009). Rate of progression of mild cognitive impairment to dementia - meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica, Vol. 119. No. 4. pp. 252–265.

  • 60

    Morris, R. G., & Kopelman, M. D. (1986) The Memory Deficits in Alzheimer-type Dementia: A Review. The Quarterly Journal of Experimental Psychology Section A, Vol. 38. No. 4. pp. 575–602.

  • 61

    Mortamais, M., Ash, J. A., Harrison, J., Kaye, J., Kramer, J., Randolph, C., … Ritchie, K. (2017) Detecting cognitive changes in preclinical Alzheimer’s disease: A review of its feasibility. Alzheimer’s & Dementia, Vol. 13. No. 4. pp. 468–492.

  • 62

    Moussavi, Z., Kimura, K., Kehler, L., de Oliveira Francisco, C., & Lithgow, B. (2021) A Novel Program to Improve Cognitive Function in Individuals With Dementia Using Transcranial Alternating Current Stimulation (tACS) and Tutored Cognitive Exercises. Frontiers in Aging, Vol. 2, 3.

  • 63

    Murdoch, B. E., Chenery, H. J., Wilks, V., & Boyle, R. S. (1987) Language disorders in dementia of the Alzheimer type. Brain and Language, Vol. 31. No. 1. pp. 122–137.

  • 64

    Nichols, E., Szoeke, C. E., Vollset, S. E., Abbasi, N., Abd-Allah, F., Abdela, J., … Murray, C. J. (2019) Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, Vol. 18. No. 1. pp. 88–106.

  • 65

    Nissen, M. J., Corkin, S., Buonanno, F. S., Growdon, J. H., Wray, S. H., & Bauer, J. (1985) Spatial Vision in Alzheimer’s Disease: General Findings and a Case Report. Archives of Neurology, Vol. 42. No. 7. pp. 667–671.

  • 66

    Pache, M. (2003) Colour vision deficiencies in Alzheimer’s disease. Age and Ageing, Vol. 32. No. 4. pp. 422–426.

  • 67

    Patterson, C. (2018) World alzheimer report 2018. London, Alzheimer’s Disease International

  • 68

    Petersen, R. C., Lopez, O., Armstrong, M. J., Getchius, T. S. D., Ganguli, M., Gloss, D., … Rae-Grant, A. (2018) Practice guideline update summary: Mild cognitive impairment report of theguideline development, dissemination, and implementation. Neurology, Vol. 90. No. 3. pp. 126–135.

  • 69

    Rahman, M. A., Rahman, M. R., Zaman, T., Uddin, M. S., Islam, R., Abdel-Daim, M. M., & Rhim, H. (2020) Emerging Potential of Naturally Occurring Autophagy Modulators Against Neurodegeneration. Current Pharmaceutical Design, Vol. 26. No. 7. pp. 772–779.

  • 70

    Rathore, S., Habes, M., Iftikhar, M. A., Shacklett, A., & Davatzikos, C. (2017) A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. NeuroImage, Vol. 155. pp. 530–548.

  • 71

    Reid, L. M., & MacLullich, A. M. J. (2006) Subjective Memory Complaints and Cognitive Impairment in Older People. Dementia and Geriatric Cognitive Disorders, Vol. 22. No. 5–6. pp. 471–485.

  • 72

    Roberts, R., & Knopman, D. S. (2013) Classification and epidemiology of MCI. Clinics in Geriatric Medicine, Vol. 29. No. 4. pp. 753–772.

  • 73

    Rutjes, A. W., Denton, D. A., Di Nisio, M., Lee-Yee, C., Abraham, R. P., Al-Assaf, A. S., … McCleery, J. (2020) Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life: a Cochrane Review. BJPsych Advances, Vol. 26. No. 1. p. 2.

  • 74

    Schindler, S. E., & Bateman, R. J. (2021) Combining blood-based biomarkers to predict risk for Alzheimer’s disease dementia. Nature Aging, Vol. 1. No. 1. pp. 26–28.

  • 75

    Serrano-Pozo, A., Das, S., & Hyman, B. T. (2021). APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. The Lancet Neurology, Vol. 20. No. 1. pp. 68–80.

  • 76

    Shen, X. N., Li, J. Q., Wang, H. F., Li, H. Q., Huang, Y. Y., Yang, Y. X., … Alzheimer’s Disease Neuroimaging Initiative (2020) Plasma amyloid, tau, and neurodegeneration biomarker profiles predict Alzheimer’s disease pathology and clinical progression in older adults without dementia. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, Vol. 12. No. 1. e12104.

  • 77

    Slot, R. E. R., Sikkes, S. A. M., Berkhof, J., Brodaty, H., Buckley, R., Cavedo, E., … van der Flier, W. M. (2019) Subjective cognitive decline and rates of incident Alzheimer’s disease and non-Alzheimer’s disease dementia. Alzheimer’s & Dementia, Vol. 15. No. 3. pp. 465–476.

  • 78

    Snitz, B. E., & Brickman, A. M. (2020) Do subtle cognitive deficits precede amyloid accumulation?: Cart before the horse. Neurology, Vol. 94. No. 4. pp. 151–152.

  • 79

    Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., … Phelps, C. H. (2011) Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, Vol. 7. No. 3. pp. 280–292.

  • 80

    Thal, D. R., Rüb, U., Orantes, M., & Braak, H. (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology, Vol. 58. No. 12. pp. 1791–1800.

  • 81

    Trick, G. L., & Silverman, S. E. (1991) Visual sensitivity to motion: Age–related changes and deficits in senile dementia of the alzheimer type. Neurology, Vol. 41. No. 9. pp. 1437–1440.

  • 82

    Tzekov, R., & Mullan, M. (2014) Vision function abnormalities in Alzheimer disease. Survey of Ophthalmology, Vol. 59. No. 4. pp. 414–433.

  • 83

    Uddin, M. S., Al Mamun, A., Asaduzzaman, M., Hosn, F., Abu Sufian, M., Takeda, S., … Sujan, M. A. R. (2018) Spectrum of Disease and Prescription Pattern for Outpatients with Neurological Disorders: An Empirical Pilot Study in Bangladesh. Annals of Neurosciences, Vol. 25. No. 1. pp. 25–37.

  • 84

    Uddin, M. S., Al Mamun, A., Takeda, S., Sarwar, M. S., & Begum, M. M. (2019) Analyzing the chance of developing dementia among geriatric people: a cross-sectional pilot study in Bangladesh. Psychogeriatrics, Vol. 19. No. 2. pp. 87–94.

  • 85

    Vakli, P., Deák-Meszlényi, R. J., Hermann, P., & Vidnyánszky, Z. (2018) Transfer learning improves resting-state functional connectivity pattern analysis using convolutional neural networks. GigaScience, Vol. 7. No. 12. giy130.

  • 86

    Vogel, J. W., Young, A. L., Oxtoby, N. P., Smith, R., Ossenkoppele, R., Strandberg, O. T., … Hansson, O. (2021) Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nature Medicine, Vol. 27. No. 5. pp. 871–881.

  • 87

    Wadley, V. G., Harrell, L. E., & Marson, D. C. (2003) Self- and Informant Report of Financial Abilities in Patients with Alzheimer’s Disease: Reliable and Valid? Journal of the American Geriatrics Society, Vol. 51. No. 11. pp. 1621–1626.

  • 88

    World Health Organization (2019) Risk reduction of cognitive decline and dementia: WHO guidelines. World Health Organization

  • 89

    Xiao, X., Liu, X., & Jiao, B. (2020) Epigenetics: Recent Advances and Its Role in the Treatment of Alzheimer’s Disease. Frontiers in Neurology, Vol. 11. 538301.

  • 90

    Zetterberg, H., & Blennow, K. (2020) Blood Biomarkers: Democratizing Alzheimer’s Diagnostics. Neuron, Vol. 106. No. 6. pp. 881–883.

The author instructions are available in separate PDFs.
Please, download the Hungarian version from HERE, the English version from HERE.
The Submissions templates are available in MS Word.
For articles in Hungarian, please download it from HERE and for articles in English from HERE.
 

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906
E-mail: scietsec@bm.gov.hu

2020  
CrossRef Documents 13
CrossRef Cites 0
CrossRef H-index 0
Days from submission to acceptance 247
Days from acceptance to publication 229
Acceptance Rate 36%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
English
Size A4
Year of
Foundation
2020
Publication
Programme
2020 Volume 1
Volumes
per Year
1
Issues
per Year
4
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
Founder's
Address
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN ISSN 2732-2688

Editor-in-Chief:

  • Tamás NÉMETH 
    (Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research
    Budapest, Hungary)

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Melinda KOVÁCS (Szent István University Kaposvár Campus)Á
  • Miklós MARÓTH (Eötvös Loránd Research Network)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • József HALLER (University of Public Service)
  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (National Research, Development and Innovation Office)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • András KOLTAY (University of Public Service)
  • Gábor KOVÁCS (University of Public Service)
  • József PALLO (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)
  • János JÓZSA (Budapest University of Technology and Economics)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)