Authors:
András Makó Department of Soil Physics and Water Management, Institute for Soil Sciences, Centre for Agricultural Research Budapest Hungary; ELKH ATK TAKI Talajfizikai és Vízgazdálkodási Osztály Budapest Magyarország
Department of Environmental Sustainability (Georgikon Campus), Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences Keszthely Hungary; MATE KÖTI Környezeti Fenntarthatósági Tanszék Keszthely Magyarország

Search for other papers by András Makó in
Current site
Google Scholar
PubMed
Close
,
Magdalena Ryżak Institute of Agrophysics Polish Academy of Sciences Lublin Poland; Lengyel Tudományos Akadémia Agrofizikai Kutatóintézet Lublin Lengyelország

Search for other papers by Magdalena Ryżak in
Current site
Google Scholar
PubMed
Close
,
Gyöngyi Barna Department of Soil Physics and Water Management, Institute for Soil Sciences, Centre for Agricultural Research Budapest Hungary; ELKH ATK TAKI Talajfizikai és Vízgazdálkodási Osztály Budapest Magyarország

Search for other papers by Gyöngyi Barna in
Current site
Google Scholar
PubMed
Close
,
Cezary Polakowski Institute of Agrophysics Polish Academy of Sciences Lublin Poland; Lengyel Tudományos Akadémia Agrofizikai Kutatóintézet Lublin Lengyelország

Search for other papers by Cezary Polakowski in
Current site
Google Scholar
PubMed
Close
,
Kálmán Rajkai Department of Soil Physics and Water Management, Institute for Soil Sciences, Centre for Agricultural Research Budapest Hungary; ELKH ATK TAKI Talajfizikai és Vízgazdálkodási Osztály Budapest Magyarország

Search for other papers by Kálmán Rajkai in
Current site
Google Scholar
PubMed
Close
,
Zsófia Bakacsi Department of Soil Physics and Water Management, Institute for Soil Sciences, Centre for Agricultural Research Budapest Hungary; ELKH ATK TAKI Talajfizikai és Vízgazdálkodási Osztály Budapest Magyarország

Search for other papers by Zsófia Bakacsi in
Current site
Google Scholar
PubMed
Close
,
Hilda Hernádi Department of Environmental Sustainability (Georgikon Campus), Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences Keszthely Hungary; MATE KÖTI Környezeti Fenntarthatósági Tanszék Keszthely Magyarország

Search for other papers by Hilda Hernádi in
Current site
Google Scholar
PubMed
Close
,
Michał Beczek Institute of Agrophysics Polish Academy of Sciences Lublin Poland; Lengyel Tudományos Akadémia Agrofizikai Kutatóintézet Lublin Lengyelország

Search for other papers by Michał Beczek in
Current site
Google Scholar
PubMed
Close
,
Agata Sochan Institute of Agrophysics Polish Academy of Sciences Lublin Poland; Lengyel Tudományos Akadémia Agrofizikai Kutatóintézet Lublin Lengyelország

Search for other papers by Agata Sochan in
Current site
Google Scholar
PubMed
Close
,
Rafał Mazur Institute of Agrophysics Polish Academy of Sciences Lublin Poland; Lengyel Tudományos Akadémia Agrofizikai Kutatóintézet Lublin Lengyelország

Search for other papers by Rafał Mazur in
Current site
Google Scholar
PubMed
Close
,
Mihály Kocsis Department of Environmental Sustainability (Georgikon Campus), Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences Keszthely Hungary; MATE KÖTI Környezeti Fenntarthatósági Tanszék Keszthely Magyarország

Search for other papers by Mihály Kocsis in
Current site
Google Scholar
PubMed
Close
, and
Andrzej Bieganowski Institute of Agrophysics Polish Academy of Sciences Lublin Poland; Lengyel Tudományos Akadémia Agrofizikai Kutatóintézet Lublin Lengyelország

Search for other papers by Andrzej Bieganowski in
Current site
Google Scholar
PubMed
Close
Open access

Summary. In this study, we presented the experience of two high-speed laser diffractometry methods for measuring particle size distribution (PSD) and microaggregate stability (MiAS%) of soils, which parameters have a significant influence on the soil water management properties. PSD results obtained with sieve-pipette and laser diffractometry method were compared on a continental (LUCAS), a national (HunSSD) and a regional (TOKAJ) database. We found significant differences between the results of the two methods at all three scales. When the clay/silt boundary was modified to 7 µm for the LDM, significantly better results were obtained. The LDM was also suitable for the determination of the MiAS% of soils, which was influenced mainly by organic matter, pH and exchangeable Na+ content of soils.

Összefoglalás. Tanulmányunkban a lézerdiffraktométerrel végzett talajfizikai mérések tapasztalatait és alkalmazási lehetőségeit vizsgáltuk a vízgazdálkodási kutatásokban. A talajok mechanikai összetétele, azaz az elemi talajrészecskék méret szerinti százalékos eloszlása, az egyik legfontosabb talajfizikai paraméter, mely számos egyéb tulajdonságot, így a talajok szerkezetét, vízgazdálkodását befolyásolja. Meghatározása több módon történhet: pl. a hagyományos szitás-pipettás ülepítéses módszerrel (SZPM), vagy az egyik legmodernebbnek számító lézerdiffraktométeres (LDM) eljárással. Kutatásunk során e kétféle módszerrel kapott mechanikai összetétel eredményeket három nagyobb adatbázison hasonlítottuk össze: egy kontinentális (LUCAS), egy hazai (HunSSD) és egy regionális (TOKAJ) adatállományon. Azt tapasztaltuk mindhárom adatbázis esetében, hogy a lézerdiffrakciós vizsgálatok az agyagtartalmat alulbecslik a pipettás módszerrel kapott eredményekhez képest, míg a portartalmat felülbecslik (az adatsorok eltérését jellemző RMSE értékek az agyagfrakciókra: 16,30; 19,29 és 24,97; a porfrakciókra: 15,68; 19,82 és 26,95. A homoktartalmak közt lényegesen kisebb eltéréseket tapasztaltunk (RMSE: 7,26; 9,25 és 5,25 a három adatbázis esetében). Ha azonban az LDM vizsgálati eredményeknél módosítottuk az agyag és a por frakció mérethatárát 2 µm-ről 7 µm-re, szignifikánsan jobb eredményeket kaptunk az összehasonlítás során mind az agyagtartalom (RMSE: 8,99; 6,77 és 6,54), mind a portartalom esetében (RMSE: 8,87; 7,46 és 5,74). A különböző módszerekkel mért és számított PSD eredményeket textúra háromszög diagramokon is ábrázoltunk.

A lézerdiffrakciós eljárás alkalmas a talajok mikroaggregátum stabilitásának (MiAS%) meghatározására is, melyet a HunSSD hazai adatbázis talajain mutattunk be. Megállapítottuk, hogy erős, szignifikánsan pozitív kapcsolat van a MiAS% és a talaj szervesanyag-tartalma között; és erős, szignifikánsan negatív kapcsolat a mikroaggregátumok stabilitása és a pH, a mésztartalom, a sótartalom és a kicserélhető nátriumtartalom között.

A tanulmányban vizsgált talajfizikai tulajdonságok szorosan összefüggnek a talajok vízgazdálkodási tulajdonságaival. A talajok vízgazdálkodási tulajdonságait jellemző hidrofizikai paraméterek (víztartó képesség, vízvezető képesség) becslése általában a mechanikai összetétel adatok felhasználásával történik. A becslési módszerek (pedotranszfer függvények) pontosítására egyre gyakrabban figyelembe veszik a talaj szerkezeti tulajdonságait is. Amennyiben gyorsan és megbízhatóan tudjuk mérni a talajok mechanikai összetételét és aggregátum-stabilitását lézerdiffrakciós módszerekkel, akkor a hidrofizikai tulajdonságok becsléséhez szükséges input adatokat is gyorsan, nagyobb számban tudjuk előállítani, így a talajok vízgazdálkodását is több minta alapján, nagyobb részletességgel, megbízhatóbban tudjuk jellemezni.

  • 1

    Abu-Sharar, T. M., Bingham, F. T., & Rhoades, J. D. (1987) Stability of soil aggregates as affected by electrolyte concentration and composition. Soil Science Society of America Journal, Vol. 51. No. 2. pp. 309–314. https://doi.org/10.2136/sssaj1987.03615995005100020009x

  • 2

    Almajmaie, A., Hardie, M., Doyle, R., Birch, C., & Acuna, T. (2017) Influence of soil properties on the aggregate stability of cultivated sandy clay loams. Journal of Soils and Sediments, Vol. 17. pp. 800–809. https://doi.org/10.1007/s11368-016-1568-1

  • 3

    Amézketa, E. (1999) Soil aggregate stability: a review. Journal of Sustainable Agriculture, Vol. 14. No. 2–3. pp. 83–151. https://doi.org/10.1300/J064v14n02_08.

  • 4

    Antinoro, C., Bagarello, V., Ferro, V., Giordano, G., & Iovino, M. (2012) Testing the shape-similarity hypothesis between particle-size distribution and water retention for Sicilian soils. Journal of Agricultural Engineering. Vol. 43. No. 3. pp. 114–122. https://doi.org/10.4081/JAE.2012.E18

  • 5

    Arriga, F. J., Lowery, B., & Mays, M. D. (2006) A fast method for determining soil particle size distribution using a laser instrument. Soil Science, Vol. 171. No. 9. pp. 663–674. https://doi.org/10.1097/01.ss.0000228056.92839.88

  • 6

    Bai, X., Yang, Y., Huang, T., & Liu, B. (2021) Applicability of laser diffraction method for soil particle size distribution analysis of five soil orders in the water erosion region of China. Journal of Soil and Water Conservation, Vol. 76. No. 4. pp. 303–316. https://doi.org/10.2489/jswc.2021.00009

  • 7

    Bennett, J. McL., Marchuk, A., & Marchuk, S. (2016) An alternative index to the exchangeable sodium percentage for an explanation of dispersion occurring in soils. Soil Research, Vol. 54. No. 8. pp. 949–957. https://doi.org/10.1071/SR15281

  • 8

    Bertrand, I., Delfosse, O., & Mary, B. (2007) Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: apparent and actual effects. Soil Biology and Biochemistry. Vol. 39. No. 1. pp. 276–288. https://doi.org/10.1016/j.soilbio.2006.07.016

  • 9

    Beuselinck, L., Govers, G., & Poesen, J. (1999) Assesment of micro-aggregation using laser diffractometry. Earth Surface Processes and Landforms, Vol. 24. No. 1. pp. 41–49. https://doi.org/10.1002/(SICI)1096-9837(199901)24:1%3c41::AID-ESP941%3e3.0.CO2-2.

  • 10

    Beuselinck, L., Govers, G., Poesen, J., Degraer, G., & Froyen, L. (1998) Grain-size analysis laser diffractometry: comparison with the sieve-pipette method. Catena, Vol. 32. No. 3–4. pp. 193–208. https://doi.org/10.1016/S0341-8162(98)00051-4

  • 11

    Bhat, M. A. (2016) The predictive power of reasoning ability on academic achievement. International Journal of Learning, Teaching and Educational Research, Vol. 15. No. 1. pp. 79–88.

  • 12

    Bieganowski, A., Ryżak, M., Sochan, A., Barna Gy., Hernádi H., Beczek, M., … Makó A. (2018a) Laser diffractometry in the measurements of soil and sediment particle size distribution. Advances in Agronomy, Vol. 151. pp. 215–279. https://doi.org/10.1016/bs.agron.2018.04.003

  • 13

    Bieganowski, A., Ryżak, M., & Witkowska-Walczak, B. (2010) Determination of soil aggregate disintegration dynamics using laser diffraction. Clay Minerals. Vol. 45. pp. 23–34. https://doi.org/10.1180/claymin.2010.045.1.23.

  • 14

    Bieganowski, A., Zaleski, T., Kajdas, B., Sochan, A., Józefowska, A., Beczek, M., … Ryżak, M. (2018b) An improved method for determination of aggregate stability using laser diffraction. Land Degradation and Development. Vol. 29. No. 5. pp. 1376–1384. https://doi.org/10.1002/ldr.2941

  • 15

    Blott, S. J., & Pye, K. (2006) Particle size distribution analysis of sand-sized particles by laser diffraction: an experimental investigation of instrument sensitivity and the effect of particle shape. Sedimentology, Vol. 53. pp. 671–685. https://doi.org/10.1111/j.1365-3091.2006.00786.x

  • 16

    Bortoluzzi, E. C., Poleto, C., Baginski, Á. J., & da Silva, V. R. (2010). Aggregation of subtropical soil under liming: a study using laser diffraction. Revista Brasileira de Ciência do Solo. Vol. 34. No. 3. pp. 725–734. https://doi.org/10.1590/S0100-06832010000300014

  • 17

    Bouma, J. (1989) Using soil survey data for quantitative land evaluation. In: Stewart, B. A. (ed.) Advances in Soil Science, Vol. 9. pp. 177–213. https://doi.org/10.1007/978-1-4612-3532-3_4

  • 18

    Calero, N., Barrón, V., & Torrent, J. (2008) Water dispersible clay in calcareous soils of southwestern Spain. Catena, Vol. 74. No. 1. pp. 22–30. https://doi.org/10.1016/j.catena.2007.12.007

  • 19

    Di Stefano, C., Ferro, V., & Mirabile, S. (2010) Comparison between grain-size analyses using laser diffraction and sedimentation methods. Biosystem Enginereering, Vol. 106. No. 2. pp. 205–215. https://doi.org/10.1016/j.biosystemseng.2010.03.013

  • 20

    EC (2000) European Parliament and the Council of the European Union. Directive 2000/60/EC establishing a framework for the Community action in the field of water policy. Official Journal of the European Communities, L327. pp. 1–72.

  • 21

    Eshel, G., Levy, G. J., Mingelgrin, U., & Singer, M. J. (2004) Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Science Society of America Journal, Vol. 68. No. 3. pp. 736–743. https://doi.org/10.2136/sssaj2004.7360

  • 22

    Faé, G. S., Montes, F., Bazilevskaya, E., Ano, R. M., & Kemanian, A. R. (2019) Making soil particle size analysis by laser diffraction compatible with standard soil texture determination methods. Soil Science Society of America Journal, Vol. 83. No. 4. pp. 1244–1252. https://doi.org/10.2136/sssaj2018.10.0385

  • 23

    Fedotov, G. N., Shein, E. V., Putlynev, V. I., Arkhangel’skaya, T. A., Eliseev, A. V., & Milanovskii, E. Y. (2007) Physicochemical bases of differences between the sedimentometric and laser diffraction techniques of soil particle-size analysis. Eurasian Soil Science, Vol. 40. No. 3. pp. 281–288. https://doi.org/10.1134/S1064229307030064

  • 24

    Felde, V. J. M. N. L., Schweizer, S. A., Biesgen, D., Ulbrich, A., Uteau, D., Knief, C., … & Peth, S. (2021) Wet sieving versus dry crushing: soil microaggregates reveal different physical structure, bacterial diversity and organic matter composition in a clay gradient. European Journal of Soil Science, Vol. 72. No. 2. pp. 810–828. https://doi.org/10.1111/ejss.13014

  • 25

    Fisher, P., Aumann, C., Chia, K., Halloran, N. O., & Chandra, S. (2017) Adequacy of laser diffraction for soil particle size analysis. PLoS ONE, Vol. 12. No. 5. e0176510. https://doi.org/10.1371/journal.pone.0176510

  • 26

    Fristensky, A. J., & Grismer, M. E. (2009) Evaluation of ultrasonic aggregate stability and rainfall erosion resistance of disturbed and amended soils in the Lake Tahoe Basin, USA. Catena, Vol. 79. No. 1. pp. 93–102. https://doi.org/10.1016/j.catena.2009.06.003.

  • 27

    Gaiffe, M., Duquet, B., Tavant, H., Tavant, Y., & Bruckert, S. (1984) Biological stability and physical stability of a clay-humus complex placed under different conditions of calcium or potassium saturation. Plant and Soil, Vol. 77. No. 2–3. pp. 271–284.

  • 28

    Getahun, G. T., Etana, A., Munkholm, L. J., & Kirchmann, H. (2021) Liming with CaCO3 or CaO affects aggregate stability and dissolved reactive phosphorus in a heavy clay subsoil. Soil and Tillage Research, Vol. 214. 105162. https://doi.org/10.1016/j.still.2021.105162

  • 29

    Giakoumis, T., & Voulvoulis, N. (2019) Water Framework Directive programmes of measures: lessons from the 1st planning cycle of a catchment in England. Science of the Total Environment, Vol. 668. pp. 903–916. https://doi.org/10.1016/j.scitotenv.2019.01.405

  • 30

    Grygoruk, M., & Okruszko, T. (2015) Do water management and climate-adapted management of wetlands interfere in practice? Lessons from the Biebrza valley, Poland. In: S. Ignar & M. Grygoruk (eds) Wetlands and Water Framework Directive GeoPlanet: Earth and Planetary Sciences. Springer Verlag. pp. 53–67. https://doi.org/10.1007/978-3-319-13764-3_4

  • 31

    Hall, M., & Caton, S. (2017) Am I who I say I am? Unobtrusive self-representation and personality recognition on Facebook. PLoS ONE, Vol. 12. No. 9. e0184417. https://doi.org/10.1371/journal.pone.0184417

  • 32

    Igaz D., Aydin, E., Šinkovičová, M., Šimanský, V., Tall, A., & Horák, J. (2020) Laser diffraction as an innovative alternative to standard pipette method for determination of soil texture classes in central Europe. Water, Vol. 12. No. 5. 1232. https://doi.org/10.3390/w12051232

  • 33

    Inskeep, W. P., & Bloom, P. R. (1986) Calcium carbonate supersaturation in soil solutions of calciaquolls. Soil Science Society of America Journal, Vol. 50. No. 6. pp. 1431–1437. https://doi.org/10.2136/sssaj1986.03615995005000060011x

  • 34

    ISO 11277:2020. Soil quality – Determination of particle size distribution in mineral soil material – Method by sieving and sedimentation. ISO, Geneva.

  • 35

    ISO 13320:2020. Particle size analysis – laser diffraction methods – part 1. International Organization for Standarization, Geneva, Switzerland.

  • 36

    Jedari, C., Palomino, A., Drumm, E., & Cyr, H. (2020) Comparison of hydrometer analysis and laser diffraction method for measuring particle and floc size distribution applied to fine coal refuse. Geotechnical Testing Journal, Vol. 43. No. 6. pp. 1418–1435. https://doi.org/10.1520/GTJ20180344

  • 37

    Józefaciuk, G., & Czachor, H. (2014) Impact of organic matter, iron oxides, alumina, silica and drying on mechanical and water stability of artificial soil aggregates. Assessment of a new method to study water stability. Geoderma, Vol. 221–222. pp. 1–10. https://doi.org/10.1016/j.geoderma.2014.01.020

  • 38

    Kachinsky, N. A. (1965) Soil Physics. Moscow. (in Russian)

  • 39

    Kaika, M. (2003) The Water Framework Directive: a new directive for a changing social, political and economic European framework. European Planning Studies, Vol. 11. No. 3. pp. 299–316. https://doi.org/10.1080/09654310303640

  • 40

    Kemper, W. D., & Rosenau, R. C. (1986) Aggregate Stability and Size Distribution. In: A. Klute (ed.) Methods of Soil Analysis, Part 1. (2nd ed.) Agronomy Monograph. 9. Madison, WI, ASA and SSSA. pp. 425–442.

  • 41

    Kocsis M., Dunai A., Makó A., Farsang A., & Mészáros J. (2020) Estimation of the drought sensitivity of Hungarian soils based on corn yield responses. Journal of Maps, Vol. 16. No. 2. pp. 148–154. https://doi.org/10.1080/17445647.2019.1709576

  • 42

    Konert, M., & Vandenberghe, J. (1997) Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology, Vol. 44. No. 3. pp. 523–535. https://doi.org/10.1046/j.1365-3091.1997.d01-38.x

  • 43

    Koza, M., Schmidt, G., Bondarovich, A., Akshalov, K., Conrad, C., & Pöhlitz, J. (2021) Consequences of chemical pretreatments in particle size analysis for modelling wind erosion. Geoderma, Vol. 396. 15073. https://doi.org/10.1016/j.geoderma.2021.115073

  • 44

    Kögel-Knaber, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., … Leinweber, P. (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, Vol. 171. No. 1. pp. 61–82. https://doi.org/10.1002/jpln.200700048

  • 45

    Lamorski, K., Bieganowski, A., Ryżak, M., Sochan, A., Sławinski, C., & Stelmach, W. (2014) Assessment of the usefulness of particle size distribution measured by laser diffraction for soil water retention modelling. Journal of Plant Nutrition and Soil Science, Vol. 177. No. 5. pp. 803–813. https://doi.org/10.1002/jpln.201300594

  • 46

    Le Bissonnais, Y. (1996a) Aggregates stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, Vol. 47. pp. 425–437. https://doi.org/10.1111/ejss.4_12311

  • 47

    Le Bissonnais, Y. (1996b) Soil Characteristics and Aggregate Stability. In: M. Agassi (ed.) Soil Erosion, Conservation, and Rehabilitation. New York, Marcel Dekker, Inc. pp. 41–60.

  • 48

    Levy, G. J., Agassi, M., Smith, H. J. C., & Stern, R. (1993) Microaggregate stability of kaolinitic and illitic soils determined by ultrasonic energy. Soil Science Society of America Journal, Vol. 57. No. 3. pp. 803–808. https://doi.org/10.2136/sssaj1993.03615995005700030029x

  • 49

    Li, D., Wen, L., Yang, L., Luo, P., Xiao, K., Chen, H. (...) Wang, K. (2017) Dynamics of soil organic carbon and nitrogen following agricultural abandonment in a karst region. Journal of Geophysical Research: Biogeosciences, Vol. 122. No. 1. 230–242. https://doi.org/10.1002/2016JG003683

  • 50

    Lin, L. (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics. Vol. 45. No. 1. pp. 255–268. https://doi.org/10.2307/2532051

  • 51

    Liu, T. K., Odell, R. T., Etter, W. C., & Thornburn, T. H. (1966) Comparison of clay contents determined by hydrometer and pipette methods using reduced major axis analysis. Soil Science Society of America Proceedings, Vol. 30. No. 6. pp. 665–669.

  • 52

    Loizeau, J.-L., Arbouille, D., Santiago, S., & Vernet, J.-P. (1994) Evaluation of wide range laser diffraction grain size analyser for use with sediments. Sedimentology, Vol. 41. No. 2. pp. 353–361. https://doi.org/10.1111/j.1365-3091.1994.tb01410.x

  • 53

    Madarász B., Jakab G., Szalai Z., & Juhos K. (2012) Examination of sample preparation methods for the laser grain size analysis of soils with high organic matter content. (In Hungarian) Agrokémia és Talajtan, Vol. 61. No. 2. pp. 381–398. https://doi.org/10.1556/Agrokem.60.2012.2.11

  • 54

    Makó A., & Hernádi H. (eds 2012) Petroleum derivatives in soil: soil physics research. (In Hungarian). Pannon Egyetem, Keszthely, Hungary. ISBN: 9786155044625

  • 55

    Makó A., Rajkai K., Hernádi H. & Hauk, G. (2014) Comparison of different settings and pre-treatments in soil particle-size distribution measurement by laser-diffraction method. Agrokémia és Talajtan, Vol. 63. No. 1. pp. 19–28. https://doi.org/10.1556/Agrokem.63.2014.1.3

  • 56

    Makó A., Szabó B., Rajkai K., Szabó J., Bakacsi Zs., Labancz V., … Barna Gy. (2019) Evaluation of soil texture determination using soil fraction data resulting from laser diffraction method. International Agrophysics, Vol. 33. No. 4. pp. 445–454. https://doi.org/10.31545/intagr/113347

  • 57

    Makó A., & Tóth B. (2013) Soil Data from Hungary. In: M. Weynants, L. Montanarella, G. Tóth, A. Arnoldussen, R. M. Anaya, G. Bilas, … H. Wösten. European Hydropedological Data Inventory (EU-HYDI). Brussels, Belgium. Publications Office of the European Union. pp. 50–55.

  • 58

    Makó A., Tóth B., Hernádi H., Farkas Cs., & Marth P. (2010) Introduction of the Hungarian Detailed Soil Hydrophysical Database (MARTHA) and its use to test external pedotransfer functions. Agrokémia és Talajtan, Vol. 59. No. 1. pp. 29–39. https://doi.org/10.1556/Agrokem.59.2010.1.4

  • 59

    Makó A., Tóth G., Weynants, M., Rajkai K., Hermann, T., & Tóth B. (2017) Pedotransfer functions for converting laser diffraction particle-size data to conventional values. European Journal of Soil Science, Vol. 68. No. 5. pp. 769–782. https://doi.org/10.1111/ejss.12456

  • 60

    Malvern Operators Guide (1999) Malvern Instruments Ltd., Malvern, UK

  • 61

    Mason, J. A., Greene, R. S. B., & Joeckel, R. M. (2011) Laser diffraction analysis of the disintegration of aeolian sedimentary aggregates in water. Catena, Vol. 87. pp. 107–118. https://doi.org/10.1016/j.catena.2011.05.015.

  • 62

    Mason, J. A., Jacobs, P. M., Greene, R. S. B., & Nettleton, W. D. (2003) Sedimentary aggregates in the Peoria Loess of Nebraska, USA. Catena. Vol. 53. pp. 377–397. https://doi.org/10.1016/S0341-8162(03)00073-0.

  • 63

    Matsuyama, T., & Yamamoto, H. (2004) Particle shape and laser diffraction: a discussion of particle shape problem. Journal of Dispersion Science and Technology, Vol. 25. No. 4. pp. 1–8. https://doi.org/10.1081/DIS-200025692

  • 64

    MSZ-08.0205:1978. Investigation of hydrophysical properties of soils (in Hungarian). Budapest, Hungary.

  • 65

    Oades, J. M. (1988) The retention of organic matter in soils. Biogeochemistry, Vol. 5. No. 1. pp. 35–70.

  • 66

    Oades, J. M., & Waters, A. G. (1991 ) Aggregate hierarchy in soils. Australian Journal of Soil Research, Vol. 29. No. 6. pp. 815–828. https://doi.org/10.1071/SR9910815

  • 67

    Polakowski, C., Sochan, A., Bieganowski, A., Ryżak, M., Földényi R., & Tóth J. (2014) Influence of the sand particle shape on particle size distribution measured by laser diffraction method. International Agrophysics, Vol. 28. No. 2. pp. 195–200. https://doi.org/10.2478/intag-2014-0008

  • 68

    Rajkai K., Ács F., Tóth B., & Makó A. (2018) Dynamics of water storage and retention in soil. In: T. Oweis (ed.) Water Management for Sustainable Agriculture. Cambridge, UK/England, Burleigh Dodds Science Publishing. pp. 31–74.

  • 69

    Rekolainen, S., Kämäri, J., & Hiltunen, M. (2003) A conceptual framework for identifying the need and role of models in the implementation of the Water Framework Directive. International Journal of River Basin Management, Vol. 1. No. 4. pp. 347–352. https://doi.org/10.1080/15715124.2003.9635217

  • 70

    Rengasamy, P., & Marchuk, A. (2011) Cation ratio of soil structural stability (CROSS). Soil Research, Vol. 49. No. 3. pp. 280–285. https://doi.org/10.1071/SR10105

  • 71

    Rowley, M. C., Grand, S., & Verrecchia, É. P. (2018) Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry, Vol. 137. pp. 27–49. https://doi.org/10.1007/s10533-017-0410-1

  • 72

    Ryżak, M., & Bieganowski, A. (2010) Determination of particle size distribution of soil using laser diffraction—Comparison with areometric method. International Agrophysics, Vol. 24. pp. 177–181.

  • 73

    Ryżak, M., & Bieganowski, A. (2011) Methodological aspects of determining soil particle-size distribution using the laser-diffraction method. Journal of Plant Nutrition and Soil Science, Vol. 174. No. 4. pp. 624–633. https://doi.org/10.1002/jpln.201000255

  • 74

    Ryżak, M., Walczak, R. T., & Niewczas, J. (2004) Comparison of particle size distribution in soils from laser diffraction and sedimen-tation methods (in Polish). Acta Agrophysica, Vol. 4. No. 2. pp. 509–518.

  • 75

    Sedláčková, K., & Ševelová, L. (2021) Comparison of laser diffraction method and hydrometer method for soil particle size distribution analysis. Acta Horticulturae et Regiotecturae, Vol. 24. No.1. pp. 49–55. https://doi.org/10.2478/ahr-2021-0023

  • 76

    Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, Vol. 79. No. 1. pp. 7–31. https://doi.org/10.1016/j.still.2004.03.008

  • 77

    Slattery, M. C., & Burt, T. P. (1997) Particle size charachteristics of suspended sediment in hillslope runoff and stream flow. Earth Surface Processes and Landforms, Vol. 22. pp. 705–719.

  • 78

    Sochan, A., Bieganowski, A., Ryżak, M., Dobrowolski, R., & Bartmiński, P. (2012) Comparison of soil texture determined by two dispersion units of Mastersizer 2000. International Agrophysics, Vol. 26. No. 1. pp. 99–102. https://doi.org/10.2478/v10247-012-0015-9

  • 79

    Steinfeld, C. M. M., Sharma, A., Mehrotra, R., & Kingsford, R. T. (2020) The human dimension of water availability: Influence of management rules on water supply for irrigated agriculture and the environment. Journal of Hydrology, Vol. 588. 125009. https://doi.org/10.1016/j.jhydrol.2020.125009

  • 80

    Sumner, M. E., & Naidu, R. (1998) Sodic Soils. Distribution, Properties, Management, and Environment Consequences. New York, Oxford University Press.

  • 81

    Szecsődi O., Makó A., Labancz V., Barna Gy., Gálos B., Bidló A., & Horváth A. (2021) Using different approaches of particle size analysis for estimation of water retention capacity of soils: example of Keszthely Mountains (Hungary). Acta Silvatica & Lignaria Hungarica, Vol. 17. No. 1 pp. 37–50. https://doi.org/10.37045/aslh-2021-0003

  • 82

    Taubner, H., Roth, B., & Tippkötter, R. (2009) Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis. Journal of Plant Nutrition and Soil Science, Vol. 172. No. 2. pp. 161–171. https://doi.org/10.1002/jpln.200800085

  • 83

    Tavares Filho, J., Barbosa, G. M. C., & Ribon, A. A. (2010) Water-dispersible clas in soils treated with sewage sludge. Revisita Brasileira de Ciencia do Solo, Vol. 34. No. 5. pp. 1527–1534. https://doi.org/10.1590/S0100-06832010000500005

  • 84

    Thomas, C. L., Hernandez-Allica, J., Dunham, S. J., McGrath, S. P., & Haefele, S. M. (2021) A comparison of soil texture measurements using mid-infrared spectroscopy (MIRS) and laser diffraction analysis (LDA) in diverse soils. Scientific Reports, Vol. 11. 16. https://doi.org/10.1038/s41598-020-79618-y

  • 85

    Tillé, Y., & Matei, A. (2015) Sampling: Survey Sampling. R Package version 2.7. At: https://CRAN.R-project.org/package=sampling [Accessed: 27/10/2016]

  • 86

    Tisdall, J. M., & Oades, J. M. (1982) Organic matter and water-stable aggregates in soils. Journal of Soil Science, Vol. 33. No. 2. pp. 141–163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x

  • 87

    Tóth, G., Jones, A., & Montanarella, L. (2013) The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union. Environmental Monitoring and Assessment. Vol. 185. pp. 7409–7425. https://doi.org/10.1007/s10661-013-3109-3

  • 88

    Tóth B., Weynants, M., Nemes A., Makó A., Bilas, G., & Tóth G. (2015) New generation of hydraulic pedotransfer functions for Europe. European Journal of Soil Science, Vol. 66. No. 1. pp. 226–238. https://doi.org/10.1111/ejss.12192

  • 89

    Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief C., … Kögel-Knabner, I. (2018) Microaggregates in soils. Journal of Plant Nutrition Soil Science, Vol. 181. No. 1. pp. 104–136. https://doi.org/10.1002/jpln.201600451

  • 90

    Vageler, P. (1932) Der Kationen- und Wasserhaushalt des Mineralbodens: Vom Standpunkt der Physikalischen Chemie und Seine Bedeutung für die Land- und Forstwirtschaftliche Praxis. Berlin, Springer Verlag. https://doi.org/10.1002/jpln.19320260511

  • 91

    Volk, M., Liersch, S., & Schmidt, G. (2009) Towards the implementation of the European Water Framework Directive? Lessons learned from water quality simulations in an agricultural watershed. Land Use Policy, Vol. 26. No. 3. pp. 580–588. https://doi.org/10.1016/j.landusepol.2008.08.005

  • 92

    Virto, I., Gartzia-Bengoetxea, N., & Fernández-Ugalde, O. (2011) Role of organic matter and carbonates in soil aggregation estimated using laser diffractometry. Pedosphere, Vol. 21. No. 5. pp. 566–572. https://doi.org/10.1016/S1002-0160(11)60158-6.

  • 93

    Voelkner, A., Holthusen, D., & Horn, R. (2015) Determination of soil dispersion caused by anaerobic digestates: interferences of pH and soil charge with regard to soil texture and water content. Journal of Soils and Sediments, Vol. 15. pp. 1491–1499. https://doi.org/10.1007/s11368-015-1115-5

  • 94

    Weynants, M., Montanarella, L., Tóth G., Arnoldussen, A., Anaya Romero, M., Bilas, G., … Wösten, H. (2013) European Hydropedological Data Inventory (EU-HYDI). EUR – Scientific and Technical Research Series 26053. Publications Office of the European Union. Luxembourg. JRC81129. https://doi.org/10.2788/5936

  • 95

    Wösten, J. H. M., Pachepsky, Ya. A., & Rawls, W. J. (2001) Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, Vol. 251. No. 3–4. pp. 123–150. https://doi.org/10.1016/S0022-1694(01)00464-4

  • 96

    Yang, H. (2013) The case for being automatic: introducing the Automatic Linear Modeling (LINEAR) procedure in SPSS Statistics. Multiple Linear Regression Viewpoints, Vol. 39. No. 2. pp. 27–37.

  • 97

    Yang, Y., Wang, L., Wendroth, O., Liu, B., Cheng, C., Huang, T., & Shi, Y. (2019) Is the laser diffraction method reliable for soil particle size distribution analysis? Soil Science Society of America Journal, Vol. 83. No. 2. pp. 276–287. https://doi.org/10.2136/sssaj2018.07.0252

  • Collapse
  • Expand

Editor-in-Chief:

Founding Editor-in-Chief:

  • Tamás NÉMETH

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (University of Pannonia)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)
  • Gergely DELI (University of Public Service)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • József HALLER (University of Public Service)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • János JÓZSA (Budapest University of Technology and Economics)
  • András KOLTAY (National Media and Infocommunications Authority)
  • Gábor KOVÁCS (University of Public Service)
  • Levente KOVÁCS buda University)
  • Melinda KOVÁCS (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós MARÓTH (Avicenna Institue of Middle Eastern Studies )
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • József PALLO (University of Public Service)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906
E-mail: scietsec@bm.gov.hu

DOAJ

2023  
CrossRef Documents 32
CrossRef Cites 15
Days from submission to acceptance 59
Days from acceptance to publication 104
Acceptance Rate 81%

2022  
CrossRef Documents 38
CrossRef Cites 10
Days from submission to acceptance 54
Days from acceptance to publication 78
Acceptance Rate 84%

2021  
CrossRef Documents 46
CrossRef Cites 0
Days from submission to acceptance 33
Days from acceptance to publication 85
Acceptance Rate 93%

2020  
CrossRef Documents 13
CrossRef Cites 0
Days from submission to acceptance 30
Days from acceptance to publication 62
Acceptance Rate 93%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
English
Size A4
Year of
Foundation
2020
Volumes
per Year
1
Issues
per Year
4
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
Founder's
Address
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
Applied
Licenses
CC-BY 4.0
CC-BY-NC 4.0
ISSN ISSN 2732-2688 (online), 3057-9759 (print)
   

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 0 322 12
Nov 2024 0 126 9
Dec 2024 0 54 16
Jan 2025 0 95 19
Feb 2025 0 160 16
Mar 2025 0 109 3
Apr 2025 0 0 0