Összefoglalás.
A fizikai képességek magas színvonala nélkülözhetetlen a hon- és rendvédelmi szervek személyi állományának tagjai számára. A hadrafoghatóság, bevethetőség alapvető feltétele a fizikai, mozgásszervi egészség és edzettség megléte. Az állomány felmérésére jelenleg alkalmazott fizikai tesztelési eljárások a sérülések megelőzésére, a teljesítmény optimalizálására kevésbé alkalmasak, pedig a hosszú távon fenntartható magas szintű teljesítmény a szervezeti hatékonyság és a produktivitás kulcseleme. A hon- és rendvédelmi területen dolgozó szakemberek kiképzési, oktatási költsége jelentős anyagi ráfordítás mellett valósítható meg, így a sérüléseik megelőzése, fizikai alkalmasságuk fenntartása igen fontos feladat. Külföldi példák alapján a biomechanikailag helytelen mozgások kiszűrése hozzájárul a sérülések megelőzéséhez.
Summary.
High level of physical fitness is an essential requirement towards the members of armed forces, firefighters, law enforcement services and other government services. Physical condition assessment is routinely used to determine operational readiness of these units, however, these routine tests are not suited for injury prevention. A musculoskeletal disorder, or injury can negatively influence the success of the mission and cause a long-term disability and inefficient productivity. Therefore, specific tests are required to measure musculoskeletal properties which play a significant role in the mechanisms of injury in order to screen potential injury and apply preventive measures. Several countries apply movement analysis tests and functional movement screening for their armed forces. These tests can efficiently predict the possibility of musculoskeletal injuries, thus keep soldiers in service. In most cases at the operational level specific positions mandate special physical requirements from the subjects. Task-specific testing methods provide a comprehensive report about the subjects’ current physical state. Our research team have previously developed a user-friendly, simple and cost -effective movement analysis system that can monitors and records the subjects’ movements with artificial intelligence-based Kinect Azure camera without any markers, which enables state of the art measurement, documentation and can avoid subjective evaluation or conformation bias. This method is able to provide a biomechanical report about the subject during key movement patterns such as walking, running, jumping, or squatting. The system can detect the incorrect and the well-executed technics. A corrective treatment plan is also provided if sub-optimal movement patterns are recognized. During musculoskeletal rehabilitation there is a need for objective testing and retesting in order to provide optimal quantity and quality of training loads to avoid further injury. Repeated testing provides feedback about successful rehabilitation process.
10/2015. (VII. 30.) HM rendelet a katonai szolgálatra való egészségi, pszichikai és fizikai alkalmasságról, valamint a felülvizsgálati eljárásról (2015) https://net.jogtar.hu/jogszabaly?docid=a1500010.hm
47/2016. (XI. 23.) BM rendelet egyes, az Országgyűlési Őrség hivatásos állományára vonatkozó miniszteri rendeletek módosításáról (2016) https://net.jogtar.hu/jogszabaly?docid=A1600047.BM&txtreferer=A1200085.BM
57/2009. (X. 30.) IRM-ÖM-PTNM együttes rendelet egyes rendvédelmi szervek hivatásos állományú tagjai egészségi, pszichikai és fizikai alkalmasságáról, közalkalmazottai és köztisztviselői munkaköri egészségi alkalmasságáról, a szolgálat-, illetve keresőképtelenség megállapításáról, valamint az egészségügyi alapellátásról (2009) https://net.jogtar.hu/jogszabaly?docid=a0900057.irm
AFHSC (A. F. H. S. C.) (2013) Medical evacuations from Afghanistan during Operation Enduring Freedom, active and reserve components, U.S. Armed Forces, 7 October 2001-31 December 2012. Msmr, Vol. 20. No. 6. pp. 2–8.
Asaeda, M., Kuwahara, W., Fujita, N., Yamasaki, T., & Adachi, N. (2018) Validity of motion analysis using the Kinect system to evaluate single leg stance in patients with hip disorders. Gait Posture, Vol. 62. pp. 458–462. https://doi.org/10.1016/j.gaitpost.2018.04.010
Blacker, S. D., Carter, J. M., Wilkinson, D. M., Richmond, V. L., Rayson, M. P., & Peattie, M. (2013) Physiological responses of Police Officers during job simulations wearing chemical, biological, radiological and nuclear personal protective equipment. Ergonomics, Vol. 56. No. 1. pp. 137–147. https://doi.org/10.1080/00140139.2012.734335
Bock, C., & Orr, R. M. (2015) Use of the Functional Movement Screen in a Tactical Population: A Review. Journal of Military and Veterans Health, Vol. 23. No. 2. pp. 33–42.
Bonazza, N. A., Smuin, D., Onks, C. A., Silvis, M. L., & Dhawan, A. (2016) Reliability, Validity, and Injury Predictive Value of the Functional Movement Screen: A Systematic Review and Meta-analysis. The American Journal of Sports Medicine, Vol. 45. No. 3. pp. 725–732. https://doi.org/10.1177/0363546516641937
Carlton, S. D., Orr, R., Stierli, M., & Carbone, P. D. (2013) The impact of load carriage on mobility and marksmanship of the tactical response officer. J. Australian Strength and Conditioning, Vol. 22. pp. 23–27.
Cook, G., Burton, L., & Hoogenboom, B. (2006) Pre-participation screening: the use of fundamental movements as an assessment of function. Part 1. N Am J Sports Phys Ther, Vol. 1. No. 2. pp. 62–72.
Cook, G., Burton, L., Kiesel, K., Rose, G., & Briant, F. M. (2010) Movement: Functional Movement Systems: Screening, Assessment and Corrective Strategies. On Target Publications
Davis, J. D., Orr, R., Knapik, J. J., & Harris, D. (2019) Functional Movement Screen (FMS™) Scores and Demographics of US Army Pre-Ranger Candidates. Military Medicine, Vol. 185. No. 5–6. pp. e788–e794. https://doi.org/10.1093/milmed/usz373
Dubecz, J. (2009) Általános edzéselmélet és módszertan. Budapest: Rectus Kft.
Gray, A. D., Willis, B. W., Skubic, M., Huo, Z., Razu, S., Sherman, S. L., … Siesener, N. J. (2017) Development and Validation of a Portable and Inexpensive Tool to Measure the Drop Vertical Jump Using the Microsoft Kinect V2. Sports Health, Vol. 9. No. 6. pp. 537–544.
Gáspár S. (2014) Elülső keresztszalag sérülés előfordulása a Magyar Honvédség állományán belül és rekonstrukciós taktikák a Honvédkórházban. Hadmérnök, Vol. IX. No. 1. pp. 277–283.
Hanzlíková, I. & Hébert-Losier, K. (2020) Is the Landing Error Scoring System Reliable and Valid? A Systematic Review. Sports Health, Vol. 12. No. 2. pp. 181–188. https://doi.org/10.1177/1941738119886593
Hauret, K. G., Jones, B. H., Bullock, S. H., Canham-Chervak, M., & Canada, S. (2010) Musculoskeletal injuries description of an under-recognized injury problem among military personnel. Am J Prev Med, Vol. 38. (1 Suppl.) pp. S61–70. https://doi.org/10.1016/j.amepre.2009.10.021
Hauret, K. G., Taylor, B. J., Clemmons, N. S., Block, S. R., & Jones, B. H. (2010) Frequency and causes of nonbattle injuries air evacuated from operations iraqi freedom and enduring freedom, u.s. Army, 2001-2006. Am J Prev Med, Vol. 38. (1 Suppl.) pp. S94–107. https://doi.org/10.1016/j.amepre.2009.10.022
von Heimburg, E. D., Rasmussen, A. K., & Medbø, J. I. (2006) Physiological responses of firefighters and performance predictors during a simulated rescue of hospital patients. Ergonomics, Vol. 49. No. 2. pp. 111–126. https://doi.org/10.1080/00140130500435793
Jones, B. H., Cowan, D. N., & Knapik, J. J. (1994) Exercise, Training and Injuries. Sports Med., Vol. 18. No. 3. pp. 202–214. https://doi.org/10.2165/00007256-199418030-00005
Knapik, J. J., Rieger, W., Palkoska, F., Van Camp, S., & Darakjy, S. (2009) United States Army physical readiness training: rationale and evaluation of the physical training doctrine. J Strength Cond Res, Vol. 23. No. 4. pp. 1353–1362. https://doi.org/10.1519/JSC.0b013e318194df72
Lakatos N. (2021). Mennyibe kerül a sportoló? A Soproni Darazsak Sportakadémia sportolóinak nevelési költségei. (Ba) Soproni Egyetem, Sopron
Lincoln, A. E., Smith, G. S., Amoroso, P. J., & Bell, N. S. (2002) The natural history and risk factors of musculoskeletal conditions resulting in disability among US Army personnel. Work, Vol. 18. No. 2. pp. 99–113.
Lisman, P., O’Connor, F. G., Deuster, P. A., & Knapik, J. J. (2013) Functional movement screen and aerobic fitness predict injuries in military training. Med Sci Sports Exerc., Vol. 45. No. 4. pp. 636–643. https://doi.org/10.1249/MSS.0b013e31827a1c4c
Mavor, M. P., Ross, G. B., Clouthier, A. L., Karakolis, T., & Graham, R. B. (2020) Validation of an IMU Suit for Military-Based Tasks. Sensors (Basel), Vol. 20. No. 15. 4280. https://doi.org/10.3390/s20154280
Mehl, J., Diermeier, T., Herbst, E., Imhoff, A. B., Stoffels, T., Zantop, T., … Achtnich, A. (2018) Evidence-based concepts for prevention of knee and ACL injuries. 2017 guidelines of the ligament committee of the German Knee Society (DKG). Arch Orthop Trauma Surg., Vol. 138. No. 1. pp. 51–61. https://doi.org/10.1007/s00402-017-2809-5
Nagymáté G., Tuchband T., & Kiss R. M. (2018) A novel validation and calibration method for motion capture systems based on micro-triangulation. Journal of Biomechanics, Vol. 74. pp. 16–22. https://doi.org/10.1016/j.jbiomech.2018.04.009
Nindl, B. C., Williams, T. J., Deuster, P. A., Butler, N. L., & Jones, B. H. (2013) Strategies for optimizing military physical readiness and preventing musculoskeletal injuries in the 21st century. US Army Med Dep J., Oct-Dec, pp. 5–23.
Örücü, S. & Selek, M. (2020) Design and Validation of Rule-Based Expert System by Using Kinect V2 for Real-Time Athlete Support. Applied Sciences, Vol. 10. No. 2. 611.
Petersen, E. J. & Smith, K. C. (2007) Benefits of a musculoskeletal screening examination for initial entry training soldiers. Mil Med., Vol. 172. No. 1. pp. 92–97. https://doi.org/10.7205/milmed.172.1.92
Placzek, J. D. & Boyce, D. A. (2017) Orthopaedic Physical Therapy. (Third Edition ed.) Elsevier
Pék E. (2017) A váz-, izomrendszeri megbetegedések egészségi állapot önértékelésre gyakorolt hatása mentődolgozók körében. (PhD-értekezés) Pécsi Tudományegyetem, Pécs. https://doktoriiskola.etk.pte.hu/public/upload/files/Doktoriiskola/Tezisfuzetek/Pek_Emese_dissz.pdf
Ressman, J., Rasmussen-Barr, E., & Grooten, W. J. A. (2020) Reliability and validity of a novel Kinect-based software program for measuring a single leg squat. BMC Sports Sci Med Rehabil., Vol. 12. Article No. 31.
Sell, T. C., Pederson, J. J., Abt, J. P., Nagai, T., Deluzio, J., Wirt, M. D., … Lephart, S. M. (2013) The addition of body armor diminishes dynamic postural stability in military soldiers. Mil Med, Vol. 178. No. 1. pp. 76–81. https://doi.org/10.7205/milmed-d-12-00185
Songer, T. J. & LaPorte, R. E. (2000) Disabilities due to injury in the military. Am J Prev Med., Vol. 18. (3 Suppl.) pp. 33–40. https://doi.org/10.1016/s0749-3797(00)00107-0
Tengku Muzaffar, T. M. S., Shahrulazua A., Musa, K., Masdiamin M. N., Fuad, D. M., & Amiruddin H. M. (2013) The Activity Leading to ACL Injury and the ability to Resume Duty following Reconstructive Surgery in Malaysian Military Patients. Med J Malaysia, Vol. 68. No. 2. pp. 115–118.
Toor, A. S., Limpisvasti, O., Ihn, H. E., McGarry, M. H., Banffy, M., & Lee, T. Q. (2019) The significant effect of the medial hamstrings on dynamic knee stability. Knee Surg Sports Traumatol Arthrosc, Vol. 27. No. 8. pp. 2608–2616. https://doi.org/10.1007/s00167-018-5283-x
Uhlár, Á., Ambrus, M., Kékesi, M., Fodor, E., Grand, L., Szathmáry, G., … Lacza, Z. (2021) Kinect Azure–Based Accurate Measurement of Dynamic Valgus Position of the Knee—A Corrigible Predisposing Factor of Osteoarthritis. Applied Sciences, Vol. 11. No. 12. 5536. https://doi.org/10.3390/app11125536
Uhlár, Á., Fodor, E., & Lacza, Z. (2019) Exploring the relationship between knee injuries and dynamic knee valgus. Physical Education, Sport, Science, Vol. 4. No. 3–4. pp. 16–22. https://doi.org/10.21846/tst.2019.3-4.2
Vásárhelyi-Nagy I. (2018) A beavatkozó állomány kondícionális képességei fejlesztésének új irányai, különös tekintettel a proprioceptív módszerek alkalmazására. Hadmérnök, Vol. XII. No. 4. pp. 408–422.
Vásárhelyi-Nagy I. (2022) Új irányok az előzetes fizikai alkalmassági vizsgálatok rendszerében. Védelem Tudomány: Katasztrófavédelmi Online Tudományos Folyóirat, Vol. 5. No. 3. pp. 207–224.
Walker, T. B., Lennemann, L. M., Anderson, V., Lyons, W., & Zupan, M. F. (2011) Adaptations to a new physical training program in the combat controller training pipeline. J Spec Oper Med, Vol. 11. No. 2. pp. 37–44. https://doi.org/10.55460/xyke-p4n6