Összefoglalás.
Számos meglévő infrastruktúra-beruházás esetén – legyen az felújítás, rekonstrukció vagy fejlesztés – szükségessé válhat új hidak építése, ezek közül kiemelt kérdéskör azon beruházások, ahol az áthidalandó keresztmetszet bővül és a feszített vasbeton gerendás szerkezet helyett az öszvérszerkezetű híd gazdaságilag indokolttá válik. A híd építéstechnológiája forgalombiztonsági és forgalomszervezési oldalról kulcsfontosságú. Az építés ideje alatt a forgalmat biztosítani kell, amit a hagyományos építési módnál forgalomterelés mellett lehet megtenni. A kutatásom ezért a hídépítés miatt szükséges forgalomterelések közúti biztonságával foglalkozik, illetve az új, a problémát feloldó hídépítési technológiákkal.
Summary.
In the case of many existing infrastructure investments – be it renovation, reconstruction or development – it may become necessary to build new bridges. The investments where the cross-section is expanded and instead of the prestressed reinforced concrete beam structure, the use of composite bridge becomes more economically. The construction technology of the steel-concrete composite bridge is crucial from the point of view of traffic safety and traffic management. Traffic must be ensured during construction, which can be done with traffic diversion in the case of the traditional construction method. My research therefore deals with road safety, the traffic diversions required due to steel-concrete composite bridge construction, and the new bridge construction technologies that solve this problem. In the reconstruction of the M1 motorway, the prefabricated prestressed reinforced concrete beam structure could be built with intermediate support, but there are several arguments in favor of abandoning the intermediate support and building steel-concrete composite bridge with single span. The strongest of these is ensuring road safety. In addition to the existing traffic, in order to avoid traffic disruption, it is necessary to avoid an intermediate support, which reduces traffic jam and waiting time. I illustrate the impact of traffic diversion on traffic safety by analyzing a previous renovation work on the M1 motorway. During the research, I compare the traffic diversion accident data with the control section. The control section is the same road section, with the same length of time, before the renovation in this study. The comparison confirms that traffic disruption should be avoided during bridge construction. It is economically justified to build steel-composite bridges, but it is necessary to deviate from the cast-in-place on concrete construction of deck slab, because it requires traffic diversion. I present new construction technologies for the construction of steel-concrete composite bridges, which can be used to ensure road safety. Overall, the raising the degree of prefabrication results in the avoidance of traffic disruption. Among construction technologies, economic aspects are typically decisive, such as the availability of human resources, capacity utilization and reduction of construction time. We developed a new construction technology for achieve the deck slab of steel-concrete composite bridges with less human resources, in a shorter time, with the available capacities, more economical construction and without traffic disruption.
Ahmed, I. M. & Tsavdaridis, K. D. (2019) The evolution of composite flooring systems: applications, testing, modelling and eurocode design approches. Journal of Constructional Steel Research, Vol. 155. No. 1. pp. 286–300. https://doi.org/10.1016/j.jcsr.2019.01.007
Berthellemy, J. (2001) Composite Construction - Innovative Solutions for Road Bridges. Proc. 3rd International Meeting on Composite Bridges. Madrid
Berthellemy, J. (2009) French bridges experiences from prefabricated deck elements. Bridges built with prefabricated elements, ELEM-workshop. Stockholm
Berthellemy, J. (2013) Fatigue designed CL-cutting shape: A new economic steel-concrete connection system and some applications for bridges. Procedia Engineering, Vol. 66. pp. 138–149. https://doi.org/10.1016/j.proeng.2013.12.069
Berthellemy, J., Schavits, D., & Erre, C. (2016) Crossing motorways under traffic without intermediate piers. Steel Construction, Vol. 9. No. 3. pp. 200–206. https://doi.org/10.1002/stco.201610028
Brozzetti, J. (2000) Design development of steel-concrete composite bridges in France. Journal of Constructional Steel Research, Vol. 55. No. 1–3. pp. 229–243. https://doi.org/10.1016/S0143-974X(99)00087-5
Chang-Su, S., Pil-Goo, L., & Sung-Pil, C. (2001) Design of shear connection in composite steel and concrete bridges with precast decks. Journal of Constructional Steel Research, Vol. 57. No. 3. pp. 203–219. https://doi.org/10.1016/S0143-974X(00)00018-3
European Commission (2020) EU road safety policy framework 2021-2030 – Next steps towards „Vision Zero”. Luxembourg, Publications Office of the European Union
Feczkó R. (2017) Nem mindig szerelemből házasodunk, azaz az Érd Szent István úti hidak szerkezeteinek kiválasztása és megvalósítása. Hídépítő A-Híd Zrt. magazinja, Vol. 44. No. 4. pp. 16–19.
Feczkó R., Gosztola D., Orosz K., Magyar J., Sal L., & Szabó B. (2021) Eljárás öszvérhíd pályaszerkezetének megvalósítására. Szabadalmi Közlöny és Védjegyértesítő, Vol. 126. No. 4. p. 42.
Gosztola D. (2019) Újgenerációs öszvérszerkezet építésének eljárása. Hídépítő A-Híd Zrt. magazinja, Vol. 46. No. 4. pp. 33–35.
Hällmark, R. (2018) Composite bridges – Innovative ways of achieving composite action, Ph.D. thesis. Luleå University of Technology
Hällmark, R., Collin, P., & Hicks, S. J. (2019) Push-out tests of coiled pins vs. headed studs. Journal of Constructional Steel Research, Vol. 161. No. 3. pp. 1–16. https://doi.org/10.1016/j.jcsr.2019.06.009
Petzek, E., Schmitt, V., Metes, E., & Toma, L. (2014) New Integral Bridges Solutions for the Romanian Motorway. In: Petzek, E. & Bancila, R. (eds) The Eight International Conference „Bridge in Danube Basin”. Springer Vieweg, Wiesbaden. pp. 339–352. https://doi.org/10.1007/978-3-658-03714-7_25
Sándor Zs. P. & Monostori Á. (2020) Gyorsforgalmi útszakaszok forgalmi elemzése az átlagsebesség-mérés módszerével. Közlekedéstudományi Szemle, Vol. 70. No. 2. pp. 54–67. http://doi.org/10.24228/KTSZ.2020.2.5
Stefan, C. (2006) Section Control–Automatic Speed Enforcement in the Kaisermühlen Tunnel (Vienna, A22 Motorway). Vienna. Austrian Road Safety Board (KvF)
Szilvai J. A. (2020) Az országos közúthálózat felújításának irányai. Az aszfalt: a Magyar Aszfaltipari Egyesülés (HAPA) hivatalos szakmai lapja, Vol. 27. No. 1. pp. 8–10.