Authors:
Judit Benyó Eötvös Loránd Tudományegyetem, Ásványtani Tanszék Budapest Magyarország; Department of Mineralogy, Faculty of Science, ELTE – Eötvös Loránd University Budapest Hungary
ELTE Környezettudományi Doktori Iskola Budapest Magyarország; ELTE Doctoral School of Environmental Sciences Budapest Hungary
Fővárosi Vízművek Zrt. Budapest Magyarország; Budapest Waterworks Budapest Hungary

Search for other papers by Judit Benyó in
Current site
Google Scholar
PubMed
Close
,
Tamás Mireisz Fővárosi Vízművek Zrt. Budapest Magyarország; Budapest Waterworks Budapest Hungary

Search for other papers by Tamás Mireisz in
Current site
Google Scholar
PubMed
Close
,
Erzsébet Harman-Tóth Eötvös Loránd Tudományegyetem, Ásványtani Tanszék Budapest Magyarország; Department of Mineralogy, Faculty of Science, ELTE – Eötvös Loránd University Budapest Hungary
ELTE Természetrajzi Múzeum Budapest Magyarország; Eötvös Museum of Natural History, Faculty of Science, ELTE – Eötvös Loránd University Budapest Hungary

Search for other papers by Erzsébet Harman-Tóth in
Current site
Google Scholar
PubMed
Close
,
Károly Márialigeti Eötvös Loránd Tudományegyetem, Mikrobiológiai Tanszék Budapest Magyarország; Department of Microbiology, Faculty of Science, ELTE – Eötvös Loránd University Budapest Hungary

Search for other papers by Károly Márialigeti in
Current site
Google Scholar
PubMed
Close
, and
Tamás Weiszburg Eötvös Loránd Tudományegyetem, Ásványtani Tanszék Budapest Magyarország; Department of Mineralogy, Faculty of Science, ELTE – Eötvös Loránd University Budapest Hungary
Sapientia Erdélyi Magyar Tudományegyetem, Környezettudományi Tanszék Kolozsvár Románia; Environmental Science Department, Sapientia Hungarian University of Transylvania Cluj-Napoca Romania

Search for other papers by Tamás Weiszburg in
Current site
Google Scholar
PubMed
Close
Open access

Összefoglalás.

A kibányászható foszfátércek fogyóban vannak. A nemzetközi kutatások alapján a felmerülő foszfáthiány enyhítésére megoldást jelenthet a szennyvíztelepeken spontán képződő, és ott üzemeltetési problémát is okozó foszfátásványok hasznosítása. A vizsgált szennyvíztisztítóban két foszfátásvány, a struvit ([NH4]Mg[PO4]·6H2Orombos) és a vivianit (Fe3(PO4)2·8H2Omonoklin) okoz problémát. A technológiai folyamatban azonosítottuk azt az egyik pontot, ahol ma – szándékolatlanul – szubmikrométeres vivianitkristályok nukleációja történhet. E ponton beavatkozva, vagy e pont után egy új műtárggyal tudatosan erősítve a kristályképződést mind a nyersanyag-leválasztás, mind az üzemeltetési probléma csökkentése lehetővé válhat.

Summary.

Based on the experience of the past decades, the 21th century is challenged with several environmental problems that call for a solution at a global level. One such problem of the foreseeable future is, according to scientific forecasts, the shortage in phosphate rocks. Phosphate minerals forming spontaneously in sewage plants and causing operational difficulties at the same time, with a proper technological design can alleviate the emerging problem of phosphate shortage.

We examined the phosphate mineral precipitation processes in a large-capacity sewage treatment plant in Hungary. Both the precipitated phases and phosphorus content characteristics of the sewage sludge were studied.

X-ray powder diffraction (XPD) was used to identify the minerals. The total phosphorus content (expressed as phosphate concentration) and the dissolved orthophosphate content of the sewage sludge samples were measured by molybdenate spectrophotometric method.

Our findings point to two main phosphate minerals: struvite (Mg(NH4)[PO4] · 6H2Oorthorhombic) and vivianite (Fe3[PO4]2 · 8H2Omonoclinic) formed as technologically harmful precipitates at the sewage plant (Figure 1). The two minerals occur downstream of the digester, at separate, well-defined points of the technological line (Figure 2). Both crystalline compounds are potentially suitable for the alleviation of the impending global phosphate shortage.

We determined the total P content (expressed as phosphate concentration) of sewage sludge samples, along with the quantitative distribution of the dissolved (liquid; orthophosphate) and solid (organic phosphate, polyphosphate, phosphate minerals) fractions of the sludge prior and after the anaerobic digester tanks (Figure 3). The total P content (expressed as phosphate concentration) – in full agreement with the expectations – has practically not changed during digestion (Figure 3; columns # K1 MW vs. 5 MW). Concerning the P forms present in the sludge we expected an increase of dissolved orthophosphate at the expense of bonded phosphate after the digestion (Figure 3; column # „elméleti”); however the actual orthophosphate content dropped by 80% in the sample after the digester (Figure 3; columns # K1 vs. 5). The misfit between the stable total P content and the decreasing amount of both the dissolved (ortho)phosphate and solid polyphosphate in the digester clearly indicates the formation of submicroscopic vivianite, confirming from the P speciation side the findings of Wilfert et al. (2018). That process is triggered by the addition of FeCl3 into the digester. The more controlled FeCl3 treatment and/or a new technological step (mineral separator tank) included right after the digester may help the separation of up to 50% or more of phosphorous from the sludge in the form of vivianite. By that step the spontaneous and harmful mineral formation, currently visible on the technological equipment following the digestion, could also be reduced significantly.

  • 1

    Doyle, D. J. & Parsons, A. S. (2002) Struvite formation, control and recovery. Water Research, Vol. 36 pp. 3925–3940. https://doi.org/10.1016/S0043-1354(02)00126-4

  • 2

    Horta, C. (2017) Bioavailability of phosphorus from composts and struvite in acid soils. Revista Brasileira de Engenharia Agricola e Ambiental, Vol. 21. No. 7. pp. 459–464. https://doi.org/10.1590/1807-1929/agriambi.v21n7p459-464

  • 3

    Kominko, H., Gorazda, K., & Wzorek, Z. (2021) Formulation and evaluation of organo-mineral fertilizers based on sewage sludge optimized for maize and sunflower crops. Waste Management, Vol. 136. pp. 57–66. https://doi.org/10.1016/j.wasman.2021.09.040

  • 4

    Konczak, M. & Huber, M. (2022) Application of the engineered sewage sludge-derived biochar to minimize water eutrophication by removal of ammonium and phosphate ions from water. Journal of Cleaner Production, Vol. 331. https://doi.org/10.1016/j.jclepro.2021.129994

  • 5

    Kuscu, O. S. & Eke, E. (2021) Recovery of struvite from sewage sludge using pulsed electric field technique and process optimization. Water Air and Soil Pollution, Vol. 232. https://doi.org/10.1007/s11270-021-05220-1

  • 6

    Lorick, D., Macura, B., Ahlstrom, M., Grimvall, A., & Harder, R. (2020) Effectiveness of struvite precipitation and ammonia stripping for recovery of phosphorus and nitrogen from anaerobic digestate: a systematic review. Environmental Evidence, Vol. 9. https://doi.org/10.1186/s13750-020-00211-x

  • 7

    Ogorodova, L., Vigasina, M., Mel’chakova, L., Rusakov, V., Kosova, D., Ksenofontov, D., & Bryzgalov, I. (2017) Enthalpy of formation of natural hydrous iron phosphate: Vivianite. The Journal of Chemical Thermodynamics, Vol. 110. pp. 193–200. https://doi.org/10.1016/j.jct.2017.02.020

  • 8

    Qin, P., Hui, H., Song, W.,Wu, H., & Li, S. (2022) Characteristics of fused calcium magnesium phosphate fertilizer (FCMP) made from municipal sewage sludge and its properties. Journal of Environmental Chemical Engineering, Vol. 10. No. 6. https://doi.org/10.1016/j.jece.2022.108563

  • 9

    Saoudi, M., Dabert, P., Vedrenne, F. & Daumer, M-L. (2022) Mechanisms governing the dissolution of phosphorus and iron in sewage sludge by the bioacidification process and its correlation with iron phosphate speciation. Chemosphere, Vol. 307. Part 2., 135704. https://doi.org/10.1016/j.chemosphere.2022.135704

  • 10

    Sharp, R., Vadiveloo, E., Fergen, R., Moncholi, M., Pitt, P., Wankmuller, D., & Latimer, R. (2013) A theoretical and practical evaluation of struvite control and recovery. Water Environment Research, Vol. 85. pp. 675–686. https://doi.org/10.2175/106143012X13560205145253

  • 11

    Siciliano, A., Limonti, C., Gurcio, G. M., & Molinari, R. (2020) Advances in struvite precipitation technologies for nutrients removal and recovery from aqueous waste and wastewater. Sustainability, Vol. 12. No. 18. 7538. https://doi.org/10.3390/su12187538

  • 12

    Staal, L. B., Petersen, A. B., Jorgensen, C. A., Nielsen, U. G., Nielsen, P. H., & Reitzel, K. (2019) Extraction and quantification of polyphosphates in activated sludge from waste water treatment plants by 31P NMR spectroscopy. Water Research, Vol. 157. pp. 346–355. https://doi.org/10.1016/j.watres.2019.03.065

  • 13

    Ueno, Y. & Fujii, M. (2001) Three years experience of operating and selling recovered struvite from full-scale plant. Environmental Technology, Vol. 22. No. 11. pp. 1373–1381. https://doi.org/10.1080/09593332208618196

  • 14

    Vanden Nest, T., Amery, F., Fryda, L., Boogaerts, C., & Billbao, J. (2021) Renewable P sources: P use efficiency of digestate, processed animal manure, compost, biochar and struvite. Science of the Total Environment, Vol. 750. 141699 https://doi.org/10.1016/j.scitotenv.2020.141699

  • 15

    Vaneeckhaute, C., Janda, J., Meers, E., & Tack, F. M. G. (2015) Efficiency of soil and fertilizer phosphorus use in time: a comparison between recovered struvite, FePO4-sludge, digestate, animal manure, and synthetic fertilizer. In: Rakshit, A., Singh, H. B., & Sen, A. (eds) Nutrient use efficiency: From basics to advances. Springer, New Delhi, pp. 73–85. https://doi.org/10.1007/978-81-322-2169-2_6

  • 16

    Wilfert, P., Dugulan, A. I., Goubitz, K., Korving, L., Witkamp, G. J., & Van Loosdrecht, M. C. M. (2018) Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery. Water Research, Vol. 144, pp. 312–321. https://doi.org/10.1016/j.watres.2018.07.020

  • Collapse
  • Expand

Editor-in-Chief:

Founding Editor-in-Chief:

  • Tamás NÉMETH

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (University of Pannonia)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)
  • Gergely DELI (University of Public Service)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • József HALLER (University of Public Service)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • János JÓZSA (Budapest University of Technology and Economics)
  • András KOLTAY (National Media and Infocommunications Authority)
  • Gábor KOVÁCS (University of Public Service)
  • Levente KOVÁCS buda University)
  • Melinda KOVÁCS (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós MARÓTH (Avicenna Institue of Middle Eastern Studies )
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • József PALLO (University of Public Service)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906
E-mail: scietsec@bm.gov.hu

DOAJ

2023  
CrossRef Documents 32
CrossRef Cites 15
Days from submission to acceptance 59
Days from acceptance to publication 104
Acceptance Rate 81%

2022  
CrossRef Documents 38
CrossRef Cites 10
Days from submission to acceptance 54
Days from acceptance to publication 78
Acceptance Rate 84%

2021  
CrossRef Documents 46
CrossRef Cites 0
Days from submission to acceptance 33
Days from acceptance to publication 85
Acceptance Rate 93%

2020  
CrossRef Documents 13
CrossRef Cites 0
Days from submission to acceptance 30
Days from acceptance to publication 62
Acceptance Rate 93%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
English
Size A4
Year of
Foundation
2020
Volumes
per Year
1
Issues
per Year
4
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
Founder's
Address
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
Applied
Licenses
CC-BY 4.0
CC-BY-NC 4.0
ISSN ISSN 2732-2688 (online), 3057-9759 (print)
   

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2024 0 59 2
Oct 2024 0 249 7
Nov 2024 0 116 2
Dec 2024 0 31 2
Jan 2025 0 51 7
Feb 2025 0 43 4
Mar 2025 0 0 0