Összefoglalás.
Napjaink kiemelkedő állat- és közegészségügyi problémája az antimikrobiális rezisztencia (AMR) kérdésköre. Az AMR terjedése szempontjából az egyik legnagyobb jelentőségű az Escherichia coli baktérium, amelynek plazmidon kódolt rezisztenciagénjei lehetőséget adnak a horizontális génátvitelre. A szerzők célul tűzték ki, hogy az AMR kevésbé vizsgált területeit térképezik fel. Egyrészt vakcinafejlesztés modellezéséhez kiválasztott törzseket, másrészt probiotikumkészítményeket vizsgáltak új generációs szekvenálással. Számos mobilis genetikai elemet, plazmidon és fágon kódolt gént sikerült azonosítani. Az eredmények rávilágítanak arra, hogy új vakcinák, valamint probiotikumok fejlesztéséhez érdemes a kiválasztott baktériumtörzsek rezisztenciagén szűrését elvégezni.
Summary.
The spread of antimicrobial resistance (AMR) is a major public and animal health problem of our days, with the most conservative estimates suggesting that it could become the leading cause of death worldwide by 2050. The role of Escherichia coli is significant, as in many cases it creates the potential for horizontal gene transfer through antimicrobial resistance genes encoded as mobile genetic elements on plasmids. Authors have set out to map two less researched areas of potential involvement in the spread of antimicrobial resistance. One area is the investigation of potential vaccine candidate Escherichia coli isolates using next-generation sequencing (NGS). The other area is the investigation of commercialized probiotic products for farm and companion animals with NGS. Our results suggest that vaccine candidate strains may carry several mobile genetic elements encoded on plasmids or phages. Among these, there are genes clearly of public health importance (TEM-1, ampC, qnrS1, ugd) that may be responsible for the development of resistance to antibiotics classified as category B (3rd to 4th generation cephalosporins, fluoroquinolones, colistin) by the AMEG (AntiMicrobial Expert Group); the presence of these genes as mobile genetic elements is of particular concern. The ampC gene is a gene responsible for beta-lactamase overproduction, whereas TEM-1 is an ESBL gene (extended spectrum beta lactamase), which has a significant role in public health mainly in nosocomial or multiresistant infections. In the case of probiotic products, those intended for farm animals are much better regulated, thereby mobile genetic elements were not found in our study. However, preparations intended for companion animals are not regulated at all, and we found resistance genes against aminoglycosides (APH(3’)-Ia) and tetracyclines (tetS) that might have public health significance as these were encoded on mobile genetic elements on plasmids. Our results suggest that it is strongly recommended to include a pre-screening step for antimicrobial resistance genes in bacterial vaccine development. As regards probiotics, preparations for companion animals should be subject to similar regulation as those for farm animals. It is in our common interest to prevent the further spread of antimicrobial resistance as widely as possible in the light of the One Health concept and to use and preserve antibiotics responsibly for future generations.
Afrc, R.F. (1989) Probiotics in man and animals. Journal of Applied Bacteriology, Vol. 66. No. 5. pp. 365–378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
Alcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., … McArthur, A. G. (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research, Vol. 48 (D1), pp. D517–D525. https://doi.org/10.1093/nar/gkz935
Andrews, S. (2012) A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [Letöltve: 2022. 04. 25.]
Cohen, S. P., McMurry, L. M., & Levy, S. B. (1988) marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. Journal of Bacteriology, Vol. 170. No. 12. pp. 5416–5422. https://doi.org/10.1128/jb.170.12.5416-5422.1988
Daubin, V. & Szöllősi, G. J. (2016) Horizontal Gene Transfer and the History of Life. Cold Spring Harbor Perspectives in Biology, Vol. 8. No. 4. a018036. https://doi.org/10.1101/cshperspect.a018036
De Pascale, G. & Wright, G. D. (2010) Antibiotic resistance by enzyme inactivation: from mechanisms to solutions. Chembiochem: A European Journal of Chemical Biology, Vol. 11. No. 10. pp. 1325–1334. https://doi.org/10.1002/cbic.201000067
Delcour, A. H. (2009) Outer membrane permeability and antibiotic resistance. Biochimica et Biophysica Acta, Vol. 1794. No. 5. pp. 808–816. https://doi.org/10.1016/j.bbapap.2008.11.005
Detmer, A. & Glenting, J. (2006) Live bacterial vaccines – a review and identification of potential hazards. Microbial Cell Factories, Vol. 5. No. 23. https://doi.org/10.1186/1475-2859-5-23
EFSA (2005) Opinion of the Scientific Committee on a request from EFSA related to a generic approach to the safety assessment by EFSA of microorganisms used in food/feed and the production of food/feed additives. EFSA Journal, Vol. 3. No. 6. https://doi.org/10.2903/j.efsa.2005.226
EMA (2018) DNA vaccines non-amplifiable in eukaryotic cells for veterinary use. European Medicines Agency. https://www.ema.europa.eu/en/dna-vaccines-non-amplifiable-eukaryotic-cells-veterinary-use [Letöltve: 2022. 05. 09.]
Fleming, S. A. (1946) Chemotherapy: Yesterday, To-day, and To-morrow. CUP Archive
Fuda, C., Suvorov, M., Vakulenko, S. B., & Mobashery, S. (2004) The Basis for Resistance to β-Lactam Antibiotics by Penicillin-binding Protein 2a of Methicillin-resistant Staphylococcus aureus*. Journal of Biological Chemistry, Vol. 279. No. 39. pp. 40802–40806. https://doi.org/10.1074/jbc.M403589200
Gálfi P., Csikó G., & Jerzsele Á. (2015) Állatorvosi gyógyszertan III. Második, javított kiadás. Budapest: Robbie-Vet Kft.
Ganguly, N. K., Bhattacharya, S. K., Sesikeran, B., Nair, G. B., Ramakrishna, B. S., Sachdev, H. P. S., & Hemalatha, R. (2011) ICMR-DBT Guidelines for Evaluation of Probiotics in Food. The Indian Journal of Medical Research, Vol. 134. No. 1. pp. 22–25.
García-Álvarez, L., Holden, M. T. G., Lindsay, H., Webb, C. R., Brown, D. F. J., Curran, M. D. … Holmes, M. A. (2011) Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. The Lancet. Infectious Diseases, Vol. 11. No. 8. pp. 595–603. https://doi.org/10.1016/S1473-3099(11)70126-8
Guidance for Industry: Considerations for Plasmid Deoxyribonucleic Acid Vaccines for Infectious Disease Indications; Availability (2007) Federal Register. https://www.federalregister.gov/documents/2007/10/29/E7-21266/guidance-for-industry-considerations-for-plasmid-deoxyribonucleic-acid-vaccines-for-infectious [Letöltve: 2022. 05. 09.]
Gunn, J. S., Lim, K. B., Krueger, J., Kim, K., Guo, L., Hackett, M., & Miller, S. I. (1998) PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Molecular Microbiology, Vol. 27. No. 6. pp. 1171–1182. https://doi.org/10.1046/j.1365-2958.1998.00757.x
Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics, Vol. 29. No. 8. pp. 1072–1075. https://doi.org/10.1093/bioinformatics/btt086
Hartman, B. J. & Tomasz, A. (1984) Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. Journal of Bacteriology, Vol. 158. No. 2. pp. 513–516. https://doi.org/10.1128/jb.158.2.513-516.1984
Hata, M., Suzuki, M., Matsumoto, M., Takahashi, M., Sato, K., Ibe, S., & Sakae, K. (2005) Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrobial Agents and Chemotherapy, Vol. 49. No. 2. pp. 801–803. https://doi.org/10.1128/AAC.49.2.801-803.2005
Hyatt, D., Chen, G.-L., Locascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC bioinformatics, Vol. 11. Article No. 119. https://doi.org/10.1186/1471-2105-11-119
Jacoby, G. A. (2009) AmpC beta-lactamases. Clinical Microbiology Reviews, Vol. 22. No. 1. pp. 161–182. https://doi.org/10.1128/CMR.00036-08
Johansson, M. H. K., Bortolaia, V., Tansirichaiya, S., Aarestrup, F. M., Roberts, A. P., & Petersen, T. N. (2021) Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. The Journal of Antimicrobial Chemotherapy, Vol. 76. No. 1. pp. 101–109. https://doi.org/10.1093/jac/dkaa390
Kovács D., Palkovicsné Pézsa N., Farkas O., & Jerzsele Á. (2021) Antibiotikum-alternatívák a sertéstartásban: Irodalmi összefoglaló. Magyar Állatorvosok Lapja, Vol. 14. No. 5. pp. 281–282
Krawczyk, P. S., Lipinski, L. & Dziembowski, A. (2018) PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, Vol. 46. No. 6. p. e35. https://doi.org/10.1093/nar/gkx1321
Krueger, F. (2022) Trim Galore. Perl. https://github.com/FelixKrueger/TrimGalore [2022-04-25]
Lerminiaux, N. A. & Cameron, A. D. S. (2018) Horizontal transfer of antibiotic resistance genes in clinical environments. Canadian Journal of Microbiology, Vol. 65. No. 1. https://doi.org/10.1139/cjm-2018-0275
Li, D., Liu, C-M., Luo, R., Sadakane, K., Lam, T-W. (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31 (10) 1674–1676, https://doi.org/10.1093/bioinformatics/btv033
Li, X.-Z. & Nikaido, H. (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs, Vol. 69. No. 12. pp. 1555–1623. https://doi.org/10.2165/11317030-000000000-00000
Lin, X., Yang, M., Li, H., Wang, C., & Peng, X.-X. (2014) Decreased expression of LamB and Odp1 complex is crucial for antibiotic resistance in Escherichia coli. Journal of Proteomics, Vol. 98. pp. 244–253. https://doi.org/10.1016/j.jprot.2013.12.024
Luiken, R. E. C., Van Gompel, L., Munk, P., Sarrazin, S., Joosten, P., Dorado-García, A. … EFFORT Consortium (2019) Associations between antimicrobial use and the faecal resistome on broiler farms from nine European countries. The Journal of Antimicrobial Chemotherapy, Vol. 74. No. 9. pp. 2596–2604. https://doi.org/10.1093/jac/dkz235
Makino, K., Yokoyama, K., Kubota, Y., Yutsudo, C. H., Kimura, S., Kurokawa, K., & Shinagawa, H. (1999) Complete nucleotide sequence of the prophage VT2-Sakai carrying the verotoxin 2 genes of the enterohemorrhagic Escherichia coli O157:H7 derived from the Sakai outbreak. Genes & Genetic Systems, Vol. 74. No. 5. pp. 227–239. https://doi.org/10.1266/ggs.74.227
Martínez, J. L., Coque, T. M., & Baquero, F. (2015) What is a resistance gene? Ranking risk in resistomes. Nature Reviews. Microbiology, Vol. 13. No. 2. pp. 116–123. https://doi.org/10.1038/nrmicro3399
Munk, P., Knudsen, B. E., Lukjancenko, O., Duarte, A. S. R., Van Gompel, L., Luiken, R. E. C. … Aarestrup, F. M. (2018) Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nature Microbiology, Vol. 3. No. 8. pp. 898–908. https://doi.org/10.1038/s41564-018-0192-9
Nilsson, A. I., Berg, O. G., Aspevall, O., Kahlmeter, G. & Andersson, D. I. (2003) Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrobial Agents and Chemotherapy, Vol. 47. No. 9. pp. 2850–2858. https://doi.org/10.1128/AAC.47.9.2850-2858.2003
Oka, A., Sugisaki, H., & Takanami, M. (1981) Nucleotide sequence of the kanamycin resistance transposon Tn903. Journal of Molecular Biology, Vol. 147. No. 2. pp. 217–226. https://doi.org/10.1016/0022-2836(81)90438-1
Paterson, G. K., Larsen, A. R., Robb, A., Edwards, G. E., Pennycott, T. W., Foster, G. … Holmes, M. A. (2012) The newly described mecA homologue, mecALGA251, is present in methicillin-resistant Staphylococcus aureus isolates from a diverse range of host species. The Journal of Antimicrobial Chemotherapy, Vol. 67. No. 12. pp. 2809–2813. https://doi.org/10.1093/jac/dks329
Roux, S., Enault, F., Hurwitz, B. L., & Sullivan, M. B. (2015) VirSorter: mining viral signal from microbial genomic data. PeerJ, Vol. 3. p. e985. https://doi.org/10.7717/peerj.985
Sahin-Tóth, J., Kovács, E., Tóthpál, A., Juhász, J., Forró, B., Bányai, K. … Dobay, O. (2021) Whole genome sequencing of coagulase positive staphylococci from a dog-and-owner screening survey. PloS One, Vol. 16. No. 1. p. e0245351. https://doi.org/10.1371/journal.pone.0245351
Sakamoto, Y., Furukawa, S., Ogihara, H., & Yamasaki, M. (2003) Fosmidomycin Resistance in Adenylate Cyclase Deficient (cya) Mutants of Escherichia coli. Bioscience, Biotechnology, and Biochemistry, Vol. 67. No. 9. pp. 2030–2033. https://doi.org/10.1271/bbb.67.2030
Salverda, M. L. M., De Visser, J. A. G. M., & Barlow, M. (2010) Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS microbiology reviews, Vol. 34. No. 6. pp. 1015–1036. https://doi.org/10.1111/j.1574-6976.2010.00222.x
Standardization, W.H.O.E.C. on B. & Organization, W.H. (2016) WHO Expert Committee on Biological Standardization: Sixty-sixth Report. World Health Organization
Takahata, S., Ida, T., Hiraishi, T., Sakakibara, S., Maebashi, K., Terada, S. … Tomono, K. (2010) Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. International Journal of Antimicrobial Agents, Vol. 35. No. 4. pp. 333–337. https://doi.org/10.1016/j.ijantimicag.2009.11.011
The Comprehensive Antibiotic Resistance Database: https://card.mcmaster.ca/ [Letöltve: 2022. 04. 18.]
Tóth A. G., Papp M., Jerzsele Á., Borbély F., Reibling T., Makrai L., & Solymosi N. (2021) Szoptató kocák bélsárrezisztomja egy hazai nagy létszámú sertésállományban. Magyar Állatorvosok Lapja, Vol. 143. No. 4. pp. 203–214.
Ubukata, K., Nonoguchi, R., Matsuhashi, M., & Konno, M. (1989) Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein. Journal of Bacteriology, Vol. 171. No. 5. pp. 2882–2885. https://doi.org/10.1128/jb.171.5.2882-2885.1989
Van Gompel, L., Luiken, R. E. C., Hansen, R. B., Munk, P., Bouwknegt, M., Heres, L. & Smit, L. A. M. (2020) Description and determinants of the faecal resistome and microbiome of farmers and slaughterhouse workers: A metagenome-wide cross-sectional study. Environment International, Vol. 143, 105939. https://doi.org/10.1016/j.envint.2020.105939
Wilson, D. N., Hauryliuk, V., Atkinson, G. C., & O’Neill, A. J. (2020) Target protection as a key antibiotic resistance mechanism. Nature Reviews Microbiology, Vol. 18. pp. 637–648. https://eprints.whiterose.ac.uk/164346/ [Letöltve: 2022. 01. 07.]
Zhang, D., Jiang, B., Xiang, Z., & Wang, S. (2008) Functional characterisation of altered outer membrane proteins for tetracycline resistance in Escherichia coli. International Journal of Antimicrobial Agents, Vol. 32. No. 4. pp. 315–319. https://doi.org/10.1016/j.ijantimicag.2008.04.015