Author:
Róbert Roszkos Magyar Agrár- és Élettudományi Egyetem, Állatbiotechnológiai és Állattudományi Doktori Iskola Gödöllő Magyarország; Doctoral School of Animal Science, Hungarian University of Agriculture and Life Sciences Gödöllő Hungary
ADEXGO Kft. Balatonfüred Magyarország; ADEXGO Kft. Balatonfüred Hungary

Search for other papers by Róbert Roszkos in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7051-3985
Open access

Összefoglalás.

A kutatás célja olyan n-3 zsírsavakra alapozott takarmányozási módszer fejlesztése, ami javíthatja a nagy teljesítményű tenyészkocák termelési mutatóit, és ezáltal gazdaságosabbá teheti termelésüket. A kifejlesztett kiegészítő takarmányok hatásainak vizsgálata nagyüzemi körülmények között, több kísérletben, különböző dózisokban és eltérő időszakokban etetve történt. Az eredmények pontosabb értékelése céljából a hagyományos vizsgálatok mellett gyorsvizsgálati módszerek (pl. elektronikus orr) alkalmazására is sor került. A kísérletek eredményei alapján olyan etetési stratégia kidolgozása van folyamatban, amely hatékonyan képes kiegészíteni a magyarországi sertés késztakarmányok esszenciális zsírsavkészletét, és hosszú távon eredményesen javíthatja a tenyészkocák teljesítménymutatóit.

Summary.

The research aimed to develop a feeding strategy based on n-3 fatty acids, which can improve the production parameters of high-performance breeding sows and thereby make their production more economically advanced. To earn this, the effects of the developed supplementary feeds on the performance of sows and their piglets in several large-scale swine farm experiments, at different doses and periods were investigated.

In the first trial, the effects of n-6 and n-3 fatty acid supplementation on the performance parameters of sows and the fatty acid profile of sow milk were examined. Besides traditional fatty acid analysis, a novel electronic nose method was also used. The control group received 10 g of sunflower oil-based supplementation rich in n-6 fatty acids per kg feed. Experimental animals received the same amount of fish oil as an n-3 fatty acid source. The diets were corn- and soybean meal-based. Supplementation of fish oil reduced the wean to oestrus interval (non-significantly) in the trial group and decreased the number of sows having oestrus later than seven days after weaning. The treatments did not affect the performance of the subsequent farrow of sows. Supplementation of fish oil significantly increased the amount of n-3 polyunsaturated fatty acids, especially eicosapentaenoic acid (C20:5, n-3), docosapentaenoic acid (C22:5, n-3), and docosahexaenoic acid (C22:6, n-3), in the milk (p < 0.001). The chemical composition of milk was not affected by the treatments. The electronic nose could separate milk samples collected from control and trial groups based on their odour profile.

In the second trial, the effects of n-3 fatty acid supplementation on the performance parameters of sows and their piglets were investigated in a special nutritional situation when α-linolenic acid (C18:3, n-3) was already high in the sows’ compound feeds. The control group received no supplementation during the trial, but experimental animals received 5 g of fish oil-based supplement instead of linseed meal-based supplementation. The diets were corn- and soybean, and linseed meal-based. Supplementation of fish oil during lactation reduced the weaning mortality of piglets in the trial groups (1st replication: p < 0.00; 2nd replication: p < 0.04). Wean to oestrus interval decreased significantly in the case of the trial group in the 1st replication (p < 0.019) but was not changed in the 2nd. The rate of late oestrus, conception, and farrowing were apparently improved in the trial group in both replications compared to the control. The results of the subsequent farrow were also better in the trial group, where the number of live-born piglets increased in both replications compared to the recent farrow.

Based on the results, a feeding strategy is being developed that can effectively supply Hungarian sow feeds with those n-3 fatty acids, which can improve the long-term performance parameters of breeding sows.

  • 1

    AOAC (Association of Official Analytical Chemists) (2006) Official methods of analysis, 18th ed. Washington, DC: AOAC

  • 2

    Hightshoe, R. B., Cochran, R. C., Corah, L. R., Kiracofe, G. H., Harmon, D. L., & Perry, R. C. (1991) Effects of calcium soaps of fatty acids on postpartum reproductive function in beef cows. Journal of Animal Science, Vol. 69. Issue 10. pp. 4097–4103. https://doi.org/10.2527/1991.69104097x

  • 3

    Jump, D. B. (2002) Dietary polyunsaturated fatty acids and regulation of gene transcription. Current Opinion in Lipidology, Vol. 13. Issue 2. pp. 155–164. https://doi.org/10.1097/00041433-200204000-00007

  • 4

    Kang, N. K., Jun, T. S., Yang, Y. S., & Kim, Y. S. (2014) Analysis of volatile flavor compounds in milk using electronic nose system. Journal of Sensor Science and Technology, Vol. 23. Issue 5. pp. 320–325. https://doi.org/10.5369/JSST.2014.23.5.320

  • 5

    Kurlak, L. O., & Stephenson, T. J. (1999) Plausible explanations for effects of long chain polyunsaturated fatty acids (LCPUFA) on neonates. Archives of Disease in Childhood. Fetal and Neonatal Edition, Vol. 80. Issue 2. pp. 148–154. https://doi.org/10.1136/fn.80.2.f148

  • 6

    Lauridsen, C., & Danielsen, V. (2004) Lactational dietary fat levels and sources influence milk composition and performance of sows and their progeny. Livestock Production Science, Vol. 91. Issues 1–2. pp. 95–105. https://doi.org/10.1016/j.livprodsci.2004.07.014

  • 7

    Lauridsen, C., & Jensen, S. K. (2007) Lipid composition of lactational diets influences the fatty acid profile of the progeny before and after suckling. Animal, Vol. 1. Issue 7. pp. 952–962. https://doi.org/10.1017/S175173110700033X

  • 8

    Lavery, A., Lawlor, P. G., Miller, H. M., & Magowan, E. (2019). The effect of dietary oil type and energy intake in lactating sows on the fatty acid profile of colostrum and milk, and piglet growth to weaning. Animals (Basel), Vol. 9. No. 12. p. 1092. https://doi.org/10.3390/ani9121092

  • 9

    Leroy, J. L., Van Soom, A., Opsomer, G., Goovaerts, I. G., & Bols, P. E. (2008) Reduced fertility in high-yielding dairy cows: Are the oocyte and embryo in danger? Part II. Reproduction in Domestic Animals, Vol. 43. Issue 5. pp. 623–632. https://doi.org/10.1111/j.1439-0531.2007.00961.x

  • 10

    Liu, W., Yu, J., Sun, Z., Song, Y., Wang, X., Wang. H. … Heping, Z. (2016) Relationships between functional genes in Lactobacillus delbrueckii ssp. bulgaricus isolates and phenotypic characteristics associated with fermentation time and flavor production in yogurt elucidated using multilocus sequence typing. Journal of Dairy Science, Vol. 99. Issue 1. pp. 89–103. https://doi.org/10.3168/jds.2015-10209

  • 11

    Luo, J., Huang, F., Xiao, C., Fang, Z., Peng, J., & Jiang, S. (2013) Responses of growth performance and proinflammatory cytokines expression to fish oil supplementation in lactation sows’ and/or weaned piglets’ diets. BioMed Research International, Vol. 2013. AID. 905918. https://doi.org/10.1155/2013/905918

  • 12

    Luo, W., Xu, X., Luo, Z., Yao, J., Zhang, J., Xu, W. … Xu, J. (2019) Effect of fish oil supplementation in sow diet during late gestation and lactation period on litter characteristics, milk composition and fatty acid profile of sows and their offspring. International Journal of Animal Science, Vol. 19. Issue 1. pp. 8–17. https://doi.org/10.1080/1828051X.2019.1685917

  • 13

    Noblet, J., & Etienne, M. (1989) Estimation of sow milk nutrient output. Journal of Animal Science, Vol. 67. Issue 12. pp. 3352–3359. https://doi.org/10.2527/jas1989.67123352x

  • 14

    Price, P. T., Nelson, C. M., & Clarke, S. D. (2000) Omega-3 polyunsaturated fatty acid regulation of gene expression. Current Opinion in Lipidology, Vol. 11. Issue 1. pp. 3–7. https://doi.org/10.1097/00041433-200002000-00002

  • 15

    Rosero, D. S., Boyd, D., McCulley, M., Odle, J., & Heugten, E. (2016) Essential fatty acid supplementation during lactation is required to maximize the subsequent reproductive performance of the modern sow. Animal Reproduction Science, Vol. 168. pp. 151–163. https://doi.org/10.1016/j.anireprosci.2016.03.010

  • 16

    Roszkos R., George B., Tóth T., Fébel H., & Mézes M. (2021) Effect of n-3 polyunsaturated fatty acid feeding on the fatty acid profile and odor of milk in danbred sows. Journal of Applied Animal Research, Vol. 49. Issue 1. pp. 447–459. https://doi.org/10.1080/09712119.2021.2005071

  • 17

    Roszkos R., Tóth T., & Mézes M. (2020) Review: practical use of n-3 fatty acids to improve reproduction parameters in the context of modern sow nutrition. Animals, Vol. 10. No. 7. pp. 1141. https://doi.org/10.3390/ani10071141

  • 18

    Sampels, S., Pickova, J., Högberg, A., & Neil, M. (2011) Fatty acid transfer from sow to piglet differs for different polyunsaturated fatty acids (PUFA). Physiological Research, Vol. 60. pp. 113–124. https://doi.org/10.33549/physiolres.932067

  • 19

    Siu, G. M., & Draper, H. H. (1982) Metabolism of malonaldehyde in vivo and in vitro. Lipids, Vol. 17. Issue 5. pp. 349–355. https://doi.org/10.1007/BF02535193

  • 20

    Smits, R. J., Luxford, B. G., Mitchell, M., & Nottle, M. B. (2011) Sow litter size is increased in the subsequent parity when lactating sows are fed diets containing n-3 fatty acids from fish oil. Journal of Animal Science, Vol. 89. Issue 9. pp. 2731–2738. https://doi.org/10.2527/jas.2010-3593

  • 21

    Stillwell, W., & Wassall, S. R. (2003) Docosahexaenoic acid: Membrane properties of an unique fatty acid. Chemistry and Physics of Lipids, Vol. 126. Issue 1. pp. 1–27. https://doi.org/10.1016/S0009-3084(03)00101-4

  • 22

    Vedin, I., Cederholm, T., Freund-Levi, Y., Basun, H., Hjorth, E., Irving, G. F. … Palmblad, J. (2010) Reduced prostaglandin F2α alpha release from blood mononuclear leukocytes after oral supplementation of ω3 fatty acids: The OmegAD study. Journal of Lipid Research, Vol. 51. Issue 5. pp. 1179–1185. https://doi.org/10.1194/jlr.M002667

  • 23

    Wathes, D. C., Abayasekara, D. R. E., & Aitken, R. J. (2007) Polyunsaturated fatty acids in male and female reproduction. Biology of Reproduction, Vol. 77. Issue 2. pp. 190–201. https://doi.org/10.1095/biolreprod.107.060558

  • 24

    Yao, W., Li, J., Wang, J. J., Zhou, W., Wang, Q., Zhu, R. … Thacker, P. (2012) Effects of dietary ratio of n-6 to n-3 polyunsaturated fatty acids on immunoglobulins, cytokines, fatty acid composition, and performance of lactating sows and suckling piglets. Journal of Animal Science and Biotechnology, Vol. 3. ANo. 43. https://doi.org/10.1186/2049-1891-3-43

  • 25

    Zeron, Y., Sklan, D., & Arav, A. (2002) Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes. Molecular Reproduction and Development, Vol. 61. Issue 2. pp. 271–278. https://doi.org/10.1002/mrd.1156

  • Collapse
  • Expand

Editor-in-Chief:

Founding Editor-in-Chief:

  • Tamás NÉMETH

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (University of Pannonia)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)
  • Gergely DELI (University of Public Service)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • József HALLER (University of Public Service)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • János JÓZSA (Budapest University of Technology and Economics)
  • András KOLTAY (National Media and Infocommunications Authority)
  • Gábor KOVÁCS (University of Public Service)
  • Levente KOVÁCS buda University)
  • Melinda KOVÁCS (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós MARÓTH (Avicenna Institue of Middle Eastern Studies )
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • József PALLO (University of Public Service)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906
E-mail: scietsec@bm.gov.hu

DOAJ

2023  
CrossRef Documents 32
CrossRef Cites 15
Days from submission to acceptance 59
Days from acceptance to publication 104
Acceptance Rate 81%

2022  
CrossRef Documents 38
CrossRef Cites 10
Days from submission to acceptance 54
Days from acceptance to publication 78
Acceptance Rate 84%

2021  
CrossRef Documents 46
CrossRef Cites 0
Days from submission to acceptance 33
Days from acceptance to publication 85
Acceptance Rate 93%

2020  
CrossRef Documents 13
CrossRef Cites 0
Days from submission to acceptance 30
Days from acceptance to publication 62
Acceptance Rate 93%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
English
Size A4
Year of
Foundation
2020
Volumes
per Year
1
Issues
per Year
4
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
Founder's
Address
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
Applied
Licenses
CC-BY 4.0
CC-BY-NC 4.0
ISSN ISSN 2732-2688 (online), 3057-9759 (print)
   

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2024 0 70 3
Oct 2024 0 179 4
Nov 2024 0 75 4
Dec 2024 0 39 7
Jan 2025 0 62 6
Feb 2025 0 51 1
Mar 2025 0 0 0