Összefoglalás.
A különböző szerkezetek és rendszerek biztonságos üzemeltetése gazdasági, környezeti és fenntarthatósági érdek. Ilyen rendszer a hazai nagynyomású, földgázszállító csőtávvezetéki rendszer, amelynek meghatározó része maga a csővezeték. A csővezetékeken előfordult káresetek ráirányították a figyelmet arra, hogy a megjelenő kihívásokra új, 21. századi válaszokra van szükség. A válasz kulcsa a csővezetékek integritásának biztosítása, rendszerszemléletű megközelítésben és informatikai támogatással. A megoldás a csővezetékintegritás-irányítási rendszer (PIMS), amely a kor technikai és technológiai színvonalán ötvözi az észszerű kockázatvállalás és a biztonságra való törekvés kompromisszumát. A közlemény bemutatja a bevezetés előtt álló hazai rendszert, illetve annak legfontosabb elemeit.
Summary.
The safe operation of different structures, of high importance and often unique systems, is important for the designer, contractor, the operator and the user; it is also an economic, environmental and sustainability interest. Safe operation must cover and manage the whole lifetime of the structure, which is a complex task. Such a system is the domestic high-pressure natural gas transmission pipeline system, of which the steel pipeline itself is a major part, with a length of approximately 6000 km. Damage to pipelines has highlighted the need for new 21st century responses to emerging challenges. The age of the pipeline has a negative impact on the occurrence of damages, while the development of technical and technological culture has a positive impact. We can be satisfied if the result is positive, i.e. if the response to the challenges reduces the relative frequency of incidents. The key to the response is to ensure the integrity of pipelines through a systems approach and complex IT support. Integrity is the ability to operate of a structure at any point in its life-cycle, including the reliable knowledge of the current state, potential threats and all relevant elements of their management. Identifying and detecting a threat (non-destructive testing), mapping its assessment principles and options, performing the assessment and then reflecting this through performance indicators, together define the direction to follow. Such a complex task is unthinkable without sufficient data in terms of quantity and quality, and special attention must be paid to the availability of such data. The solution is the Pipeline Integrity Management System (PIMS), which combines the technical and technological state of the art with the compromise between reasonable risk-taking and the striving of safety. This publication presents the domestic PIMS that is about to be implemented and its key elements. The logic of the regulation in line with leading international practice is described, the levels of assessment of threats to integrity are presented, and a flowchart of the operation of the envisaged system is presented too.
ANSI/API Recommended Practice 1173 (2015) Pipeline Safety Management Systems
ANSI/ASME B31.8s (2001) Managing System Integrity of Gas Pipelines
API Recommended Practice 1160 (2001) Managing System Integrity for Hazardous Liquid Pipelines
API Recommended Practice 1160 (2019) Managing System Integrity for Hazardous Liquid Pipelines
ASME B31G (2023) Manual for Determining the Remaining Strength of Corroded Pipelines
ASME B31.8S (2022) Managing System Integrity of Gas Pipelines
Bolt, R. (2006) Report of Study Group 3.4: A Guideline “Using or Creating Incident Databases for Natural Gas Transmission Pipelines”. 23rd World Gas Conference, June 1–5, 2006 Amsterdam, The Netherlands, pp. 1–56.
Eiber, R. J., & Jones, D. J. (1992) An analysis of reportable incidents for natural gas transmission and gathering lines, June 1984 through 1990. Technical Report, NG-18/200, American Gas Association, Inc., Arlington, VA (USA); Battelle, Columbus, OH (USA)
EN 17649 (2022) Gas infrastructure – Safety Management System (SMS) and Pipeline Integrity Management System (PIMS) – Functional requirements
Fingerhut, M., & Westlake, H. (2000a) Pipeline fitness-purpose certification. The Pipeline Pigging, Integrity Assessment, and Repair Conference, Houston, TX (USA), February 1-2, 2000. pp. 1–15.
Fingerhut, M., & Westlake, H. (2000b) Pipeline fitness-for-purpose certification. Pipes and Pipelines International, Vol. 45. No. 2. pp. 11–22.
Hellier, C. J. (2013) Handbook of Nondestructive Evaluation. The McGraw-Hill Companies, Inc.
Hopkins, P. (1998) Risk and integrity management of a transmission pipeline. 2nd International Conference on Advances in Pipeline Technology 98, Dubai, UAE, IBC, October 1998. pp. 1–17.
Hopkins, P., & Cosham, A. (1997) How do you manage your pipeline? 7th International Conference on Pipeline Risk Management and Reliability, Houston, TX (USA), November 1997. pp. 1–9.
Hopkins, P., & Lamb, M. (1997) Incorporating intelligent pigging into your pipeline integrity management system. Onshore Pipelines Conference, Berlin, Germany, 8-9 December 1997. pp. 1–25. https://www.penspen.com/wp-content/uploads/2014/09/pigging-and-pims.pdf [Letöltve: 2023. 10. 31.]
ISO 19345-1 (2019) Petroleum and natural gas industry – Pipeline transportation systems – Pipeline integrity management specification
Koncsik Zs. (2019) A szerkezetintegritás helye és szerepe az oktatásban és a kutatásban. Multidiszciplináris tudományok, Vol. 9. No. 4. pp. 63–71. https://doi.org/10.35925/j.multi.2019.4.5
Koncsik Zs. (2021) Szerkezetintegritási kutatások az Innovatív Anyagtechnológiák Tudományos Műhelyben. Multidiszciplináris Tudományok, Vol. 11. No. 2. pp. 372–379. https://doi.org/10.35925/j.multi.2021.2.49
Lukács, J. (2005) Dimensions of lifetime management. Materials Science Forum, Vol. 473–474. pp. 361–368.
Lukács J., Nagy Gy., Harmati I., Koritárné F. R., & Kuzselláné K. Zs. (2012) Szemelvények a mérnöki szerkezetek integritása témaköréből. Miskolc, Miskolci Egyetem
Magyar Energetikai és Közmű-szabályozási Hivatal (2023) A magyar földgázrendszer 2022. évi adatai. https://fgsz.hu/file/documents/2/2607/fgr_2022.pdf [Letöltve: 2023. 10. 31.]
Mannan, M., Pfenning, D. B., & Zinn, C. D. (1991) Risk-analysis procedures ensure system safety. Oil and Gas Journal, Vol. 89. No. 22. pp. 83–87.
National Transportation Safety Board (2002) Pipeline Rupture and Subsequent Fire in Bellingham, Washington, June 10, 1999. Pipeline Accident Report NTSB/PAR-02/02, Washington, DC (USA), https://www.ntsb.gov/investigations/AccidentReports/Reports/PAR0202.pdf [Letöltve: 2023. 10. 31.]
National Transportation Safety Board (2003) Natural Gas Pipeline Rupture and Fire Near Carlsbad, New Mexico, August 19, 2000. Pipeline Accident Report NTSB/PAR-03/01, Washington, D.C. (USA), https://www.ntsb.gov/investigations/AccidentReports/Reports/PAR0301.pdf [Letöltve: 2023. 10. 31.]
Newman, J. C., Jr. (1997) The merging of fatigue and fracture mechanics concepts: a historical perspective. In: Underwood, J. H., Macdonald, B. D., & Mitchell, M. R. (eds) Fatigue and Fracture Mechanics: 28th Volume, ASTM STP 1321. American Society for Testing and Materials, pp. 3–51.
Polak, J. (2000) Fatigue-cyclic Behaviour. In: Miannay, D., Costa, P., Francois, D., & Pineau, A. (eds) Advances in Mechanical Behaviour, Plasticity and Damage. Proceedings of EUROMAT 2000. Elsevier, Vol. 1. pp. 29–40.
Rittinger, J. (2006) Hegesztett szerkezetek kockázatelemzése. Anyagvizsgálók Lapja, Vol. 16. No. 4. pp. 128–132. Elektronikus folyóirat, https://epa.oszk.hu/04600/04631/00060/pdf/EPA04631_anyagvizsgalok_lapja_2006_4.pdf#page=10 [Letöltve: 2023. 10. 31.]
Schijve, J. (1996) Predictions on fatigue life and crack growth as an engineering problem. A state of the art survey. In: Lütjering, G., & Nowack, H. (eds) Proceedings of the Sixth International Fatigue Congress (FATIGUE’96). Elsevier, Vol. II. pp. 1149–1164.
Schijve, J. (2010) Fatigue of Structures and Materials. Springer Science – Business Media, B. V.
SZTFH (2022) 26/2022. (I. 31.) SZTFH rendelet a szénhidrogén szállítóvezetékek biztonsági követelményeiről és a Szénhidrogén Szállítóvezetékek Biztonsági Szabályzatáról