Összefoglalás.
A Nemzeti Hidrogénstratégia kiemelt célja a villamosenergia- és földgáz-infrastruktúra együttműködésével a szezonális áramtárolási képesség megvalósítása. A villamos energia ilyen mértékű tárolása csak fizikai formában (gázmolekula) föld alatti tárolókban lehetséges. A Megújuló Energiák Nemzeti Laboratórium projekt keretében egy egyedi tervezésű és építésű kőzetvizsgáló berendezés segítségével a hidrogénnel kevert földgáz föld alatti formációkban történő elhelyezhetőségét vizsgálja. A már kiforrott API RP 40 szabványban leírt metodikát követve az eszköz újszerűsége abban rejlik, hogy a hidrogén helyett egy kontrollgáz segítségével határozzuk meg a kőzet kiinduló és megváltozott paramétereit. A cikkben bemutatásra kerül a mérési módszer szakirodalmi előzménye és maga a módosított eljárás.
Summary.
Hungary’s National Hydrogen Strategy is giving a priority to the seasonal storage capacity of electricity in cooperation of the existing electrical- and natural gas infrastructure. Although there are solutions for electricity storage in energy form, such as battery packs, none of them are on the scale of the needed capacity.
However, the problem of seasonal storage could be solved with a different method, by converting the energy into a physically storable form via gas molecule, which can be inserted in large quantities into underground structures, thus, the problem of hydrogen storage is important (Bent 2007). In numerous papers written regarding this topic, salt domes were found to be the most potential formations for underground storage (Małachowska et al. 2022). Several existing cases can be found where hydrogen underground storage tanks were made artificially in such formations with success. In the country no salt domes are present, therefore depleted porous hydrocarbon reserves as the second most favorable solution are available for storage. However, before such actions in such formations can be taken, further research is needed regarding the long-term hydrogen storage at high pressure and temperature. One of the major concerns of hydrogen storage is the possibility of migration through the cap rock, geochemical modifications, or even structural damage of the bearing rock material.
The Mining and Energy Institute of the University of Miskolc, within the framework of the National Renewable Energy Laboratory project, takes part in answering these questions. During the research, the effects of hydrogen-mixed natural gas storage are examined on rock samples taken from the potential underground porous formations. Experiments are carried out using custom-designed and built rock testing equipment with a newly developed measurement procedure. The method is based on the measurement of steady state permeability according to the well-established API RP 40 standard and is novel in that it uses a control gas rather than hydrogen itself to determine the rock parameters before and after the hydrogen treatment. The method relies on the principle presented in the experimental work made by Klinkenberg (1941), who found that permeability as a property of rock could be determined by any fluid. In theory changes developed in the samples after the hydrogen treatment can be measured and detected by the control gas.
In the paper, the authors present the literature history of the measurement method and outline their proposed modified procedure.
American Petroleum Institute (1998) Recommended Practices for Core Analysis. Recommended Practice 40 Second Edition
Bent, S. (2007) Underground hydrogen storage in geological formations, and comparison with other storage solutions. Hydrogen Power Theoretical and Engineering Int. Symp. Merida Technical University
Dócs R., Baracza M. K. (2022) The importance of permeability measurement in the design of geothermal installations. Lectures of 16th International Scientific Conference on Mineral Waters of the Carpathian Basin, pp. 14–19.
Klinkenberg, L. J. (1941) The permeability of porous media to liquids and gases. Drilling and Production Practice API-41-200
Lakatos I., Vadászi M., Szunyog I., Galyas A. B. (2022) A hidrogén porózus közegben történő tárolása. Bányászati és Kohászati Lapok-Bányászat, Vol. 155. No. 1–2. pp. 62–69.
Małachowska, A., Lukasik, N., Mioduska, J., Gebicki, J. (2022) Hydrogen Storage in Geological Formations—The Potential of Salt Caverns. Energies, Vol. 15. No. 14. https://doi.org/10.3390/en15145038
Otaru, A. J., Morvan, H. P., Kennedy, A. R. (2018) Measurement and simulation of pressure drop across replicated porous aluminium in the Darcy-Forchheimer regime. Elsevier Acta Materialia, Vol. 149. pp. 265–273.
Vadászi M. (2022) A felszín alatti hidrogéntárolás rezervoármérnöki megközelítése. XXIII. Nemzetközi Bányászati, Kohászati és Földtani Konferencia, Erdélyi Magyar Műszaki Tudományos Társaság (EMT) pp. 1–5. https://ojs.emt.ro/bkf/article/view/923/858