Authors:
Balázs Varbai Budapesti Műszaki és Gazdaságtudományi Egyetem, Gépészmérnöki Kar, Anyagtudomány és Technológia Tanszék Budapest Magyarország; Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Materials Science and Engineering Budapest Hungary

Search for other papers by Balázs Varbai in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0497-7292
,
Levente Katula Budapesti Műszaki és Gazdaságtudományi Egyetem, Gépészmérnöki Kar, Anyagtudomány és Technológia Tanszék Budapest Magyarország; Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Materials Science and Engineering Budapest Hungary

Search for other papers by Levente Katula in
Current site
Google Scholar
PubMed
Close
,
János Dobránszky HUN-REN–BME Kompozittechnológiai Kutatócsoport Budapest Magyarország; HUN-REN–BME Research Group for Composite Science and Technology Budapest Hungary

Search for other papers by János Dobránszky in
Current site
Google Scholar
PubMed
Close
, and
Olivér Fodor ÁEF Laboratórium Kft. Budapest Magyarország; ÁEF Laboratory Ltd. Budapest Hungary

Search for other papers by Olivér Fodor in
Current site
Google Scholar
PubMed
Close
Open access

Összefoglalás.

A hidrogén tárolása iránti igény egyre növekszik, melynek oka az, hogy a hidrogén mint alternatív energiahordozó jelentős szerepet játszik a szén-dioxidkibocsátás-csökkentési törekvésekben. Azonban, az elridegedési folyamatok körében a hidrogén által előidézett károsodások jelentik a legkomolyabb problémát az acélokra nézve. Kutatómunkánk során egy nagynyomású hidrogénatmoszférás hőkezelésre alkalmas autoklávot terveztünk, majd gyártottunk. Az autoklávban P355 NH minőségű alapanyagból kimunkált szabványos Charpy-féle ütőpróbatesteket hőkezeltünk 150 °C-on, 40 bar túlnyomáson, 200 órán keresztül, tiszta hidrogén atmoszférában. A vizsgálatok eredményei alapján megállapítottuk, hogy a jelentős mértékű elridegedés a hidrogénezési folyamat után sem történt.

Summary.

The demand for hydrogen storage is growing. The primary reason for this is that hydrogen as an alternative energy carrier is playing a significant role in carbon reduction efforts as a fuel for road and maritime transport. In addition, hydrogen can be seen as a long-term flexible energy storage option. Hydrogen as an energy carrier is expected to play a significant role in residential and industrial use in the future. A first step in this development is the mixing of hydrogen with natural gas in small quantities. Increasing the share of hydrogen would not only reduce CO2 emissions, but would also facilitate the development of different hydrogen production methods and thus reduce production costs. The upper safety limit for hydrogen blending with natural gas is set by the national specification of the natural gas supply, possible material quality restrictions and the tolerance of the most sensitive equipment in the network. For this reason, the maximum allowable hydrogen content in natural gas is generally limited to 2,5%.

However, among the embrittlement processes, hydrogen-induced damage is the most serious problem for both non-alloy and low-alloy steels. Atomic hydrogen diffuses in steel at high rates. The diffusion rate is orders of magnitude higher than that of other elements; this is due to the small atomic diameter of hydrogen.

To investigate the degradation of different carbon steels in a high-pressure hydrogen atmosphere, a hydrogenation furnace was designed and fabricated at the Department of Materials Science and Engineering at BME. The hydrogenation furnace is the main part of a complex mechanical engineering system, for the operation of which the mechanical, heating, electrical supply, control and gas handling components are indispensable. The entire design process of the furnace was led by József Blücher, Professor Emeritus at BME, with the help of the engineers and technicians working on the project. Standard Charpy impact test specimens were machined from P355 NH grade material to test the embrittlement of carbon steels. The hydrogenation temperature was 150 °C, the internal overpressure in the chamber was 40 bar, the hydrogenation time was 200 hours and the atmosphere was hydrogen gas of purity 5.0. The impact test was carried out at -20, 0 and +20 °C.

Based on the results of the tests, it can be concluded that there was no significant degree of degradation both before hydrogenation and after prolonged exposure to hydrogen. It can be concluded that the tube material used as a sample is suitable for operation in a hydrogen medium. Based on the analysis of the burst areas and impact values of the impact test specimens, it was concluded that hydrogen did not cause any observable damage to the test material.

  • 1

    Bueno, A. H. S., Moreira, E. D., & Gomes, J. A. C. P. (2014) Evaluation of stress corrosion cracking and hydrogen embrittlement in an API grade steel. Engineering Failure Analysis, Vol. 36. pp. 423–431. https://doi.org/10.1016/j.engfailanal.2013.11.012

  • 2

    IEA (2019) Special Focus on Gas Infrastructure. (Különös tekintettel a gázinfrastruktúrára.) https://www.iea.org/articles/special-focus-on-gas-infrastructure [Letöltve: 2023. 12. 22.]

  • 3

    IEA (2020) Current limits on hydrogen blending in natural gas networks and gas demand per capita in selected locations. (A hidrogénnek a földgázhálózatokba való bekeverésére vonatkozó jelenlegi korlátozások és az egy főre jutó gázigény kiválasztott helyeken.) https://www.iea.org/data-and-statistics/charts/current-limits-on-hydrogen-blending-in-natural-gas-networks-and-gas-demand-per-capita-in-selected-locations [Letöltve: 2023. 12. 22.]

  • 4

    Nirosha D. Adasooriya, Wakshum Mekonnen Tucho, Erlend Holm, Terje Årthun, Vidar Hansen, Karl Gunnar Solheim, & Tor Hemmingsen (2021) Effect of hydrogen on mechanical properties and fracture of martensitic carbon steel under quenched and tempered conditions. Materials Science & Engineering: A, Vol. 803. 140495. https://doi.org/10.1016/j.msea.2020.140495

  • 5

    Kazuho Okada, Akinobu Shibata, Wu Gong, & Nobuhiro Tsuji (2022) Effect of hydrogen on evolution of deformation microstructure in low-carbon steel with ferrite microstructure. Acta Materialia, Vol. 225. 117549. https://doi.org/10.1016/j.actamat.2021.117549

  • 6

    Latanision, R. M., Gastine, O. H., & Compeau, C. R. (1977) Stress corrosion cracking and hydrogen embrittlement: differences and similarities. Proceedings of the Symposium on Environment-Sensitive Fracture of Engineering Materials, Z. A. Foroulis (ed.), Met. Soc. AIME, Chicago, pp. 48–70.

  • 7

    Lynch, S. P. (2007) Progress Towards Understanding Mechanisms Of Hydrogen Embrittlement And Stress Corrosion Cracking. CORROSION 2007, Nashville, Tennessee, March 2007. NACE-07493

  • 8

    Smith, R. D. (1999) Hydrogen distribution and redistribution in the weld zone of constructional steels – A thesis submitted for the degree of Doctor of Philosophy. Department of Materials Engineering, Brunel University

  • Collapse
  • Expand

Editor-in-Chief:

Founding Editor-in-Chief:

  • Tamás NÉMETH

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (University of Pannonia)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)
  • Gergely DELI (University of Public Service)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • József HALLER (University of Public Service)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • János JÓZSA (Budapest University of Technology and Economics)
  • András KOLTAY (National Media and Infocommunications Authority)
  • Gábor KOVÁCS (University of Public Service)
  • Levente KOVÁCS buda University)
  • Melinda KOVÁCS (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós MARÓTH (Avicenna Institue of Middle Eastern Studies )
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • József PALLO (University of Public Service)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906
E-mail: scietsec@bm.gov.hu

DOAJ

2023  
CrossRef Documents 32
CrossRef Cites 15
Days from submission to acceptance 59
Days from acceptance to publication 104
Acceptance Rate 81%

2022  
CrossRef Documents 38
CrossRef Cites 10
Days from submission to acceptance 54
Days from acceptance to publication 78
Acceptance Rate 84%

2021  
CrossRef Documents 46
CrossRef Cites 0
Days from submission to acceptance 33
Days from acceptance to publication 85
Acceptance Rate 93%

2020  
CrossRef Documents 13
CrossRef Cites 0
Days from submission to acceptance 30
Days from acceptance to publication 62
Acceptance Rate 93%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
English
Size A4
Year of
Foundation
2020
Volumes
per Year
1
Issues
per Year
4
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
Founder's
Address
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
Applied
Licenses
CC-BY 4.0
CC-BY-NC 4.0
ISSN ISSN 2732-2688 (online), 3057-9759 (print)
   

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jul 2024 0 64 10
Aug 2024 0 64 8
Sep 2024 0 27 2
Oct 2024 0 232 7
Nov 2024 0 93 7
Dec 2024 0 35 3
Jan 2025 0 20 3