Authors:
Vivien Tamás HUN-REN, Állatorvostudományi Kutatóintézet Budapest Magyarország; HUN-REN Veterinary Medical Research Institute Budapest Hungary

Search for other papers by Vivien Tamás in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8737-4950
,
István Kiss CEVA-Phylaxia Zrt., Tudományos Támogató Igazgatóság Budapest Magyarország; Ceva-Phylaxia Zrt. Budapest Hungary

Search for other papers by István Kiss in
Current site
Google Scholar
PubMed
Close
,
G. Zalán Homonnay CEVA-Phylaxia Zrt., Tudományos Támogató Igazgatóság Budapest Magyarország; Ceva-Phylaxia Zrt. Budapest Hungary

Search for other papers by G. Zalán Homonnay in
Current site
Google Scholar
PubMed
Close
,
István Mészáros HUN-REN, Állatorvostudományi Kutatóintézet Budapest Magyarország; HUN-REN Veterinary Medical Research Institute Budapest Hungary

Search for other papers by István Mészáros in
Current site
Google Scholar
PubMed
Close
,
Ferenc Olasz HUN-REN, Állatorvostudományi Kutatóintézet Budapest Magyarország; HUN-REN Veterinary Medical Research Institute Budapest Hungary

Search for other papers by Ferenc Olasz in
Current site
Google Scholar
PubMed
Close
, and
Zoltán Zádori HUN-REN, Állatorvostudományi Kutatóintézet Budapest Magyarország; HUN-REN Veterinary Medical Research Institute Budapest Hungary

Search for other papers by Zoltán Zádori in
Current site
Google Scholar
PubMed
Close
Open access

Összefoglalás.

A sertés parvovírus (PPV1) súlyos szaporodási zavarokat okoz sertésekben. Az elmúlt két évtizedben egy sajátos, új genotípus jelent meg Európában (27a). Felvetődött, hogy a PPV1-27a klaszter tagjai hátrányosan befolyásolhatják a PPV1 elleni hatékony vakcinázást. 93 GenBankban található részleges vagy teljes PPV1 nukleotid- és fehérjeszekvencia alapján megerősítettük, hogy a 27a klaszter valóban megkülönböztethető a faj más tagjaitól, és 5 jellemző pontmutációt határoztunk meg. A genetikai különbségek alapján kifejlesztettünk egy kettős allélspecifikus polimeráz láncreakciót a 27a klaszter tagjainak más PPV1 törzsektől való egyszerű és gyors megkülönböztetésére. Az érzékenyítés és a felhasználóbarátabbá tétel érdekében a módszert pedig továbbfejlesztettük qPCR alkalmazásra.

Summary.

Porcine Parvovirus (PPV) is a significant infectious agent responsible for severe reproductive failure in pigs. Until the 2000s, there was limited systematic study of genetic changes in the PPV genome, as it was believed to be highly immunologically stable. Vaccines developed from “ancient” strains were thought to provide comprehensive protection against all PPV variants. However, in the past two decades, a novel genotype, PPV-27a, has emerged in Europe, becoming the prototype of a distinct genetic cluster. Concerns were raised that members of the PPV-27a cluster might negatively impact effective vaccination against PPV.

Accurate identification and quantification of 27a viruses are crucial for understanding the biological significance of these variants. To provide an updated and reliable definition of 27a, 93 databank-deposited nucleotide and protein sequences of the VP2 of various PPV isolates were aligned. It was confirmed that the 27a cluster could be distinguished from other species members, though some divergences were noted compared to earlier defined genetic markers. Phylogenetic analysis revealed that five closely linked point mutations (261C, 682G, 1240T, 1255C, and 1306A) differentiate cluster members from other PPV variants.

Based on these genetic differences, a dual allele-specific polymerase chain reaction (PCR) was developed to easily and quickly differentiate 27a cluster members from other PPV strains. Two of the defined point mutations (261C and 682G) were utilized to create an allele-specific primer set (PS1) for the development of a 27a-specific asPCR system. The dual PCR had a detection limit of <1.66 × 104 copies/reaction. To enhance sensitivity and user-friendliness, the method was adapted for quantitative PCR (qPCR) with fluorescent probes. The sensitivity improvement of the method was approximately two logs (<1.66 × 104 copies/reaction for dual PCR versus <2.40 × 102 copies/reaction for dual qPCR).

To validate the PCR method, clinical samples were collected from cases of reproductive failure involving various types of fetal losses, including mummified or aborted fetuses. Both the dual PCR and dual qPCR were used to distinguish 27a and non-27a PPV viruses in these field samples. Thirty-one samples were investigated and from these twenty-six were found to be 27a positive with at least one of the methods. Remarkably, in eight of the fourteen cases, 27a-type viruses were detected, indicating a significant presence of these viruses in the samples.

The use of allele-specific PCR primers allows for the rapid differentiation of 27a-type viruses from other PPV genotypes. Depending on user preference, any of the PCR methods developed based on these findings can be utilized as diagnostic tools in veterinary practice. Additionally, this versatile PCR system’s application can facilitate field studies contributing to a clear assessment of virus prevalence and a better understanding of 27a biology.

  • 1

    Bergeron, J., Menezes, J., & Tijssen, P. (1993) Genomic Organization and Mapping of Transcription and Translation Products of the NADL-2 Strain of Porcine Parvovirus. Virology, Vol. 197. No. 1. pp. 86–98. https://doi.org/10.1006/viro.1993.1569

  • 2

    Cadar, D., Dán, Á., Tombácz, K., Lőrincz, M., Kiss, T., Becskei, Z., … Cságola, A. (2012) Phylogeny and evolutionary genetics of porcine parvovirus in wild boars. Infection, Genetics and Evolution, Vol. 12. pp. 1163–1171. https://doi.org/10.1016/j.meegid.2012.04.020

  • 3

    Cartwright, S. F., & Huck, R. A. (1967) Viruses isolated in association with herd infertility abortions and stillbirths in pigs. Veterinary Record, Vol. 81. pp. 196–197.

  • 4

    Cartwright, S. F., Lucas, M., & Huck, R. A. (1969) A small haemagglutinating porcine DNA virus. Journal of Comparative Pathology, Vol. 79. No. 3. pp. 371–377. https://doi.org/10.1016/0021-9975(69)90053-X

  • 5

    Corpet, F. (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, Vol. 16. No. 22. pp. 10881–10890. https://doi.org/10.1093/nar/16.22.10881

  • 6

    Garcia-Morante, B., Noguera, M., Klocke, S., Sommer, K., & Bridger, P. (2020) Duration of immunity against heterologous porcine parvovirus 1 challenge in gilts immunized with a novel subunit vaccine based on the viral protein 2. BMC Veterinary Research, Vol. 16. Article No. 184. https://doi.org/10.1186/s12917-020-02394-4

  • 7

    GenBank [WWW Document] (n. d.) https://www.ncbi.nlm.nih.gov/genbank/

  • 8

    Jóźwik, A., Manteufel, J., Selbitz, H.-J., & Truyen, U. (2009) Vaccination against porcine parvovirus protects against disease, but does not prevent infection and virus shedding after challenge infection with a heterologous virus strain. Journal of General Virology, Vol. 90. No. 10. pp. 2437–2441. https://doi.org/10.1099/vir.0.012054-0

  • 9

    Kiss, I., Kovács, E., Zádori, Z., Mészáros, I., Cságola, A., Bajnóczi, P., … Palya, V. (2020) Vaccine Protection Against Experimental Challenge Infection with a PPV-27a Genotype Virus in Pregnant Gilts. Veterinary Medicine: Research and Reports, Vol. 11. pp. 17–24. https://doi.org/10.2147/VMRR.S236912

  • 10

    Li, C., & Samulski, R. J. (2020) Engineering adeno-associated virus vectors for gene therapy. Nature Reviews Genetics, Vol. 21. pp. 255–272. https://doi.org/10.1038/s41576-019-0205-4

  • 11

    Llamas-Saiz, A. L., Agbandje-McKenna, M., Parker, J. S., Wahid, A. T., Parrish, C. R., & Rossmann, M. G. (1996) Structural analysis of a mutation in canine parvovirus which controls antigenicity and host range. Virology, Vol. 225. No. 1. pp. 65–71. https://doi.org/10.1006/viro.1996.0575

  • 12

    Lorenz, T. C. (2012) Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. Journal of Visualized Experiments, e3998. https://doi.org/10.3791/3998

  • 13

    Mészáros, I., Olasz, F., Cságola, A., Tijssen, P., & Zádori, Z. (2017a) Biology of Porcine Parvovirus (Ungulate parvovirus 1). Viruses, 9. No. 12. E393. https://doi.org/10.3390/v9120393

  • 14

    Mészáros, I., Tóth, R., Olasz, F., Tijssen, P., & Zádori, Z. (2017b) The SAT Protein of Porcine Parvovirus Accelerates Viral Spreading through Induction of Irreversible Endoplasmic Reticulum Stress. Journal of Virology, Vol. 91. No. 16. e00627-17. https://doi.org/10.1128/JVI.00627-17

  • 15

    Multalin [WWW Document] (n. d.) http://multalin.toulouse.inra.fr/multalin/

  • 16

    Nielsen, J., Rønsholt, L., & Sørensen, K. J. (1991) Experimental in utero infection of pig foetuses with porcine parvovirus (PPV). Veterinary Microbiology, Vol. 28. No. 1. pp. 1–11. https://doi.org/10.1016/0378-1135(91)90095-w

  • 17

    Noguera, M., Vela, A., Kraft, C., Chevalier, M., Goutebroze, S., de Paz, X., … Garcia-Morante, B. (2021) Effects of three commercial vaccines against porcine parvovirus 1 in pregnant gilts. Vaccine, Vol. 39. No. 29. pp. 3997–4005. https://doi.org/10.1016/j.vaccine.2021.05.042

  • 18

    Ren, X., Tao, Y., Cui, J., Suo, S., Cong, Y., & Tijssen, P. (2013) Phylogeny and evolution of porcine parvovirus. Virus Research, Vol. 178. No. 2. pp. 392–397. https://doi.org/10.1016/j.virusres.2013.09.014

  • 19

    Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., … Higgins, D. G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, Vol. 7. 539. https://doi.org/10.1038/msb.2011.75

  • 20

    Simpson, A. A., Hébert, B., Sullivan, G. M., Parrish, C. R., Zádori, Z., Tijssen, P., & Rossmann, M. G. (2002) The structure of porcine parvovirus: comparison with related viruses. Journal of Molecular Biology, Vol. 315. No. 5. pp. 1189–1198. https://doi.org/10.1006/jmbi.2001.5319

  • 21

    Streck, A. F., Canal, C. W., & Truyen, U. (2015) Molecular epidemiology and evolution of porcine parvoviruses. Infection, Genetics and Evolution, Vol. 36. pp. 300–306. https://doi.org/10.1016/j.meegid.2015.10.007

  • 22

    Streck, A. F., Canal, C. W., & Truyen, U. (2022) Viral Fitness and Antigenic Determinants of Porcine Parvovirus at the Amino Acid Level of the Capsid Protein. Journal of Virology, Vol. 96. No. 2. e0119821. https://doi.org/10.1128/JVI.01198-21

  • 23

    Streck, A. F., Homeier, T., Foerster, T., & Truyen, U. (2013) Population dynamics and in vitro antibody pressure of porcine parvovirus indicate a decrease in variability. Journal of General Virology, Vol. 94. No. 9. pp. 2050–2055. https://doi.org/10.1099/vir.0.052555-0

  • 24

    Tamás, V., Mészáros, I., Olasz, F., Kiss, I., Homonnay, Z. G., Mortensen, P., & Zádori, Z. (2022) Allele-Specific Dual PCRs to Identify Members of the 27a Cluster of PPV. Viruses, Vol. 14. No. 7. 1500. https://doi.org/10.3390/v14071500

  • 25

    Ugozzoli, L., & Wallace, R. (1991) Allele-specific polymerase chain reaction. Methods, Vol. 2. No. 1. pp. 42–48. https://doi.org/10.1016/S1046-2023(05)80124-0

  • 26

    van den Born, E., van den Elzen, P. P. M., van Kilsdonk, E., Hoeijmakers, M. J. H., & Segers, R. P. A. M. (2020) An octavalent vaccine provides pregnant gilts protection against a highly virulent porcine parvovirus strain. BMC Veterinary Research, Vol. 16. Article No. 55. https://doi.org/10.1186/s12917-020-2272-3

  • 27

    Zeeuw, E. J. L., Leinecker, N., Herwig, V., Selbitz, H.-J., & Truyen, U. (2007) Study of the virulence and cross-neutralization capability of recent porcine parvovirus field isolates and vaccine viruses in experimentally infected pregnant gilts. Journal of General Virology, Vol. 88. No. 2. pp. 420–427. https://doi.org/10.1099/vir.0.82302-0

  • 28

    Zimmermann, P., Ritzmann, M., Selbitz, H.-J., Heinritzi, K., & Truyen, U. (2006) VP1 sequences of German porcine parvovirus isolates define two genetic lineages. Journal of General Virology, Vol. 87. No. 2. pp. 295–301. https://doi.org/10.1099/vir.0.81086-0

  • Collapse
  • Expand

Editor-in-Chief:

Founding Editor-in-Chief:

  • Tamás NÉMETH

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (University of Pannonia)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)
  • Gergely DELI (University of Public Service)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • József HALLER (University of Public Service)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • János JÓZSA (Budapest University of Technology and Economics)
  • András KOLTAY (National Media and Infocommunications Authority)
  • Gábor KOVÁCS (University of Public Service)
  • Levente KOVÁCS buda University)
  • Melinda KOVÁCS (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós MARÓTH (Avicenna Institue of Middle Eastern Studies )
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • József PALLO (University of Public Service)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906
E-mail: scietsec@bm.gov.hu

DOAJ

2023  
CrossRef Documents 32
CrossRef Cites 15
Days from submission to acceptance 59
Days from acceptance to publication 104
Acceptance Rate 81%

2022  
CrossRef Documents 38
CrossRef Cites 10
Days from submission to acceptance 54
Days from acceptance to publication 78
Acceptance Rate 84%

2021  
CrossRef Documents 46
CrossRef Cites 0
Days from submission to acceptance 33
Days from acceptance to publication 85
Acceptance Rate 93%

2020  
CrossRef Documents 13
CrossRef Cites 0
Days from submission to acceptance 30
Days from acceptance to publication 62
Acceptance Rate 93%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
English
Size A4
Year of
Foundation
2020
Volumes
per Year
1
Issues
per Year
4
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
Founder's
Address
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
Applied
Licenses
CC-BY 4.0
CC-BY-NC 4.0
ISSN ISSN 2732-2688

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 0 0 0
May 2024 0 78 30
Jun 2024 0 37 15
Jul 2024 0 58 13
Aug 2024 0 63 22
Sep 2024 0 38 11
Oct 2024 0 61 8