Összefoglalás.
Az energiaigény és a megújuló energiaforrásokból származó kínálat között fennálló szezonális eltérés áthidalható a hidrogéngáz bevezetésével az energiaellátásba. A nagy léptékű energiatárolás hidrogén formájában a felszín alatti térben lehetséges. Azonban a kőzet pórusterében az injektált hidrogén hatására végbemenő reakciók nemcsak a kitermelendő hidrogén mennyiségét és minőségét csökkentik, de a kőzet hosszabb távú állékonyságát is ronthatják. A Kárpát-Pannon régióban jelentős mennyiségben találhatók porózus kőzetek, amelyek hidrogéntárolásra is alkalmasak lehetnek. Ugyanakkor, ezek a kőzetek változatos ásványos összetételük miatt reakcióba léphetnek a hidrogénnel. Vizsgálatunk célja, hogy megismerjük a kőzetalkotó ásványok viselkedését pórusvíz és hidrogén jelenlétében, amely elengedhetetlen a rezervoár tárolási potenciáljának felméréséhez.
Summary.
One of the key substances in the modern-day energy transition is hydrogen, which can be utilized as an energy storage chemical substance. To store hydrogen on the scales required for global hydrogen economy, porous geological formations should be considered. However, geochemical challenges associated with hydrogen storage in sedimentary formations are still not well understood. Mineral dissolution and precipitation, as a result of hydrogen injection into the rocks not only can decrease the quality and the quantity of the stored hydrogen but may have an impact on the rock integrity as well. The Carpathian Pannonian region is rich in porous rocks, which could serve as hydrogen storage sites. However, many of them show various mineralogical compositions, which could behave differently under high hydrogen partial pressure. The main objective of our study is to predict geochemical reactions among rock-forming minerals, pore water and hydrogen. For this purpose, we apply analytical techniques and geochemical modeling.
The subject of this research is the Late Miocene Szolnok Sandstone Formation located in the Pannonian Basin, Carpathian-Pannonian Region. In the future this Formation can play a significant role in hydrogen storage, due to its favorable reservoir geological and petrophysical characteristics.
X-ray diffraction analyses were carried out, polished and thin sections were prepared for petrographic and geochemical analyses. The collected data were used in the PHREEQC modeling environment. In the first stage, equilibrium batch models were made to assess the potential long-term impacts of hydrogen on the reservoir rock and the effect of the geological environment. The modeling results of the project showed that hydrogen almost does not react with silicates (e.g., quartz). Possible hydrogen loss can occur due to redox reactions. Pyrite (FeS2) can react with hydrogen producing hydrogen sulfide (H2S) and since petrography has revealed that the studied sandstones have pyrite as accessory mineral.
Amid, A., Mignard, D., & Wilkinson, M. (2016) Seasonal storage of hydrogen in a depleted natural gas reservoir. International Journal of Hydrogen Energy, Vol. 41. No. 12. pp. 5549–5558. http://dx.doi.org/10.1016/j.ijhydene.2016.02.036
Bauer, S. (2017) Underground Sun Storage. Final Report. Vienna, 172 p.
Berta M., Király C., Lévai G., Falus G., Székely E., Szabó C., Sciarpetti G., & Zilahi-Sebess L. (2012) Szén-dioxid felszín alatti elhelyezése és az azt meghatározó geokémiai folyamatok előzetes vizsgálata pannon üledékes formációkon. Hungarian Geophys. Vol. 53. No. 4. pp. 258–266.
Bo, Z., Zeng, L., Chen, Y., & Xie, Q. (2021) Geochemical reactions-induced hydrogen loss during underground hydrogen storage in sandstone reservoirs. International Journal of Hydrogen Energy, Vol. 46. No. 28. pp. 19998–20009. https://doi.org/10.1016/j.ijhydene.2021.03.116
Carden, P. O., & Paterson, L. (1979) Physical, chemical and energy aspects of underground hydrogen storage. International Journal of Hydrogen Energy, Vol. 4. No. 6. pp. 559–569.
Cseresznyés D., Czuppon G., Király C., Demény A., Györe D., Forray V., Kovács I., Szabó C., & Falus G. (2021) Origin of dawsonite-forming fluids in the Mihályi-Répcelak field (Pannonian Basin) using stable H, C and O isotope compositions: Implication for mineral storage of carbon-dioxide. Chemical Geology, Vol. 584. 120536.
Feldmann F., Hagemann B., Ganzer L., & Panfilov M. (2016) Numerical simulation of hydrodynamic and gas mixing processes in underground hydrogen storages. Environmental Earth Sciences, Vol. 75. Article No. 1165.
Foh, S., Novil, M., Rockar, E., & Randolph, P. (1979) Underground hydrogen storage. Final report. [Salt caverns, excavated caverns, aquifers and depleted fields]. 283 p. http:/www.osti.gov/servlets/purl/6536941-eQcCso/;
Gelencsér O., Árvai C., Mika L. T., Breitner D., LeClair D., Szabó C., Falus G., & Szabó-Krausz Z. (2023) Effect of hydrogen on calcite reactivity in sandstone reservoirs: Experimental results compared to geochemical modeling predictions. Journal of Energy Storage, Vol. 61. pp. 1–6.
Gelencsér O., Szakács A., Gál Á., Szabó Á., Dankházi Z. Tóth T., Breitner D., Szabó-Krausz Zs., Szabó Cs., & Falus Gy. (2024) Microstructural study of the Praid Salt Diapir (Transylvanian basin, Romania) and its implication on deformation history and hydrogen storage potential. Acta Geodaetica et Geophysica, https://doi.org/10.1007/s40328-024-00436-z
Gundogan, O., Mackay, E., & Todd, A. (2011) Comparison of numerical codes for geochemical modelling of CO2 storage in target sandstone reservoirs. Chemical Engineering Research and Design, Vol. 89. No. 9. pp. 1805–1816. http://dx.doi.org/10.1016/j.cherd.2010.09.008
Heinemann, N., Alcalde, J., Miocic, J. M., Hangx, S. J. T., Kallmeyer, J., Ostertag-Henning, C., Hassanpouryouzband, A., Thaysen, E. M., Strobel, G. J., Schmidt-Hattenberger, C., Edlmann, K., Wilkinson, M., Bentham, M., Stuart Haszeldine, R., Carbonell, R., & Rudloff, A. (2021) Enabling large-scale hydrogen storage in porous media-the scientific challenges. Energy & Environmental Sciences, Vol. 14. No. 2. pp. 853–864.
Hemme C., & van Berk W. (2018) Hydrogeochemical modeling to identify potential risks of underground hydrogen storage in depleted gas fields. Applied Sciences, Vol. 8. No. 11. pp. 1–19.
Juhász G. (1994) Magyarországi neogén medencerészek pannóniai s.l. üledéksorának összehasonlító elemzése. Comparison of the sedimentary sequences in Late Neogene subbasins in the Pannonian Basin, Hungary. Földtani Közlöny, Vol. 124. No. 4. pp. 341–365. https://epa.oszk.hu/01600/01635/00277/pdf/EPA01635_foldtani_kozlony_1994_124_3_341-365.pdf
Juhász, G., & Thamóné Bozsó, E. (2006) The mineral composition of the Pannonian s.1. Formations in the Great Hungarian Plain (II). – Tendencies of the changes of the mineral composition of the Pannonian s.1. sands and sandstones and their geological significance (in Hungarian with English abstract). Földtani Közlöny, Vol. 136. No. 3. pp. 431–450.
Király A., Milota K., Magyar I., & Kiss K. (2010) Tight gas exploration in the Pannonian Basin. Proceedings of the 7th Petroleum Geology Conference, Vol. 7. pp. 1125–1129.
Király C., Szabó Z., Szamosfalvi Á., Kónya P., Szabó C., & Falus G. (2017) How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence? Energy Procedia, Vol. 125. pp. 527–534. http://dx.doi.org/10.1016/j.egypro.2017.08.180
Lehner M., Tichler R., & Koppe M. (2014) SpringerBriefs in Energy: Power-to-Gas Technology and Business Models. Springer. http://www.springer.com/series/8903
Lord A. S., Kobos P. H., & Borns D. J. (2014) Geologic storage of hydrogen: Scaling up to meet city transportation demands. International Journal of Hydrogen Energy, Vol. 39. No. 28. pp. 15570–15582. http://dx.doi.org/10.1016/j.ijhydene.2014.07.121
Lysyy M., Ersland G., & Fernø M. (2022) Pore-scale dynamics for underground porous media hydrogen storage. Advances in Water Resources, Vol. 163. 104067
Magyar I., Radivojević D., Sztanó O., Synak R., Ujszászi K., & Pócsik M. (2013) Progradation of the paleo-Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Global and Planetary Change, Vol. 103. pp. 168–173.
Markó Á., Mádl-Szőnyi J., & Brehme M. (2021) Injection related issues of a doublet system in a sandstone aquifer – A generalized concept to understand and avoid problem sources in geothermal systems. Geothermics, Vol. 97. 102234.
Mátyás J. and Matter A. (1997) Diagenetic Indicators of Meteoric Flow in the Pannonian Basin, Southeast Hungary. In: I. P. Montanez, J. M. Gregg, and K. L. Shelton (eds.) Basin-Wide Diagenetic Patterns: Integrated Petrologic, Geochemical, and Hydrologic Considerations. SEPM Society for Sedimentary Geology. pp. 281–296. https://doi.org/10.2110/pec.97.57.0281.
Parkhurst D. L., & Appelo C. A. J. (2013) Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Reston, VA: U.S. Geological Survey http://pubs.er.usgs.gov/publication/tm6A43
Sendula E., & Forray V. (2014) Szolnoki homokkőben CO2 injektálás hatására lejátszódó kőzet-pórusfluidum kölcsönhatás geokémiai modellezése. Budapest: Eötvös Loránd Tudományegyetem Földrajz- és Földtudomány Intézet
Snæbjörnsdóttir, S., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S. R., & Oelkers, E. H. (2020) Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment, Vol. 1. No. 2. pp. 90–102.
Szabó Z., Gál N. E., Kun É., Szőcs T., & Falus G. (2018) Accessing effects and signals of leakage from a CO2 reservoir to a shallow freshwater aquifer by reactive transport modelling. Environmental Earth Sciences, Vol. 77. No. 12. Article No. 460.
Szabó Z., Hegyfalvi C., Freiler-Nagy Á., Udvardi B., Kónya P., Király C., Székely E., & Falus G. (2019) Geochemical reactions of Na-montmorillonite in dissolved scCO2 in relevance of modeling caprock behavior in CO2 geological storage. Periodica Polytechnica Chemical Engineering, Vol. 63. No. 2. pp. 318–327.
Szabó Z., Hellevang H., Király C., Sendula E., Kónya P., Falus G., Török S. & Szabó C. (2016) Experimental-modelling geochemical study of potential CCS caprocks in brine and CO2-saturated brine. Int. J. Greenh. Gas Control, Vol. 44. pp. 262–275. http://dx.doi.org/10.1016/j.ijggc.2015.11.027
Sztanó O., Szafián P., Magyar I., Horányi A., Bada G., Hughes D. W., Hoyer D. L., & Wallis R. J. (2013) Aggradation and progradation controlled clinothems and deep-water sand delivery model in the Neogene Lake Pannon, Makó Trough, Pannonian Basin, SE Hungary. Global and Planetary Change, Vol. 103. pp. 149–167.
Tarkowski, R. (2017) Perspectives of using the geological subsurface for hydrogen storage in Poland. International Journal of Hydrogen Energy, Vol. 42. No. 1. pp. 347–355. http://dx.doi.org/10.1016/j.ijhydene.2016.10.136
Truche, L., Berger, G., Destrigneville, C., Guillaume, D., & Giffaut, E. (2010) Kinetics of Pyrite to Pyrrhotite Reduction by Hydrogen in Calcite Buffered Solutions between 90 and 180 °C: Implications for Nuclear Waste Disposal. Geochimica et Cosmochimica Acta, Vol. 74. No. 10. pp. 2894-2914. https://doi.org/10.1016/j.gca.2010.02.027
Truche, L., Jodin-Caumon, M. C., Lerouge, C., Berger, G., Mosser-Ruck, R., Giffaut, E., & Michau, N. (2013) Sulphide mineral reactions in clay-rich rock induced by high hydrogen pressure. Application to disturbed or natural settings up to 250 °C and 30 bar. Chemical Geology, Vol. 351. No. 5. pp. 217–228.
Yekta, A. E., Pichavant, M., & Audigane, P. (2018) Evaluation of geochemical reactivity of hydrogen in sandstone: Application to geological storage. Applied Geochemistry, Vol. 95. 182–194. https://doi.org/10.1016/j.apgeochem.2018.05.021
Zeng, L., Hosseini, M., Keshavarz, A., Iglauer, S., Lu, Y., & Xie, Q. (2022) Hydrogen wettability in carbonate reservoirs: Implication for underground hydrogen storage from geochemical perspective. International Journal of Hydrogen Energy, Vol. 47. No. 60. pp. 25357–25366. https://doi.org/10.1016/j.ijhydene.2022.05.289