Authors:
Orsolya Gelencsér Eötvös Loránd Tudományegyetem, Természettudományi Kar, Környezettudományi Doktori Iskola Budapest Magyarország; Doctoral School of Environmental Sciences, Eötvös Loránd University Budapest Hungary
Eötvös Loránd Tudományegyetem, Földrajz- és Földtudományi Intézet, Litoszféra Fluidum Kutató Laboratórium (LRG) Budapest Magyarország; Lithosphere Fluid Research Lab, Institute of Geography and Earth Sciences, Eötvös Loránd University Budapest Hungary
O&GD Central Kft. Budapest Magyarország; O&GD Central Ltd. Budapest Hungary

Search for other papers by Orsolya Gelencsér in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8615-9298
,
Péter Tóth O&GD Central Kft. Budapest Magyarország; O&GD Central Ltd. Budapest Hungary

Search for other papers by Péter Tóth in
Current site
Google Scholar
PubMed
Close
,
Tibor Németh Pécsi Tudományegyetem, Földtani és Meteorológiai Tanszék Pécs Magyarország; Department of Geology and Meteorology, University of Pécs Pécs Hungary
Eötvös Loránd Tudományegyetem, Ásványtani Tanszék Budapest Magyarország; Department of Mineralogy, Eötvös Loránd University Budapest Hungary

Search for other papers by Tibor Németh in
Current site
Google Scholar
PubMed
Close
,
Zsuzsanna Szabó-Krausz Eötvös Loránd Tudományegyetem, Földrajz- és Földtudományi Intézet, Litoszféra Fluidum Kutató Laboratórium (LRG) Budapest Magyarország; Lithosphere Fluid Research Lab, Institute of Geography and Earth Sciences, Eötvös Loránd University Budapest Hungary

Search for other papers by Zsuzsanna Szabó-Krausz in
Current site
Google Scholar
PubMed
Close
, and
György Falus Szabályozott Tevékenységek Felügyeleti Hatósága Budapest Magyarország; Supervisory Authority for Regulatory Affairs Budapest Hungary

Search for other papers by György Falus in
Current site
Google Scholar
PubMed
Close
Open access

Összefoglalás.

Az energiaigény és a megújuló energiaforrásokból származó kínálat között fennálló szezonális eltérés áthidalható a hidrogéngáz bevezetésével az energiaellátásba. A nagy léptékű energiatárolás hidrogén formájában a felszín alatti térben lehetséges. Azonban a kőzet pórusterében az injektált hidrogén hatására végbemenő reakciók nemcsak a kitermelendő hidrogén mennyiségét és minőségét csökkentik, de a kőzet hosszabb távú állékonyságát is ronthatják. A Kárpát-Pannon régióban jelentős mennyiségben találhatók porózus kőzetek, amelyek hidrogéntárolásra is alkalmasak lehetnek. Ugyanakkor, ezek a kőzetek változatos ásványos összetételük miatt reakcióba léphetnek a hidrogénnel. Vizsgálatunk célja, hogy megismerjük a kőzetalkotó ásványok viselkedését pórusvíz és hidrogén jelenlétében, amely elengedhetetlen a rezervoár tárolási potenciáljának felméréséhez.

Summary.

One of the key substances in the modern-day energy transition is hydrogen, which can be utilized as an energy storage chemical substance. To store hydrogen on the scales required for global hydrogen economy, porous geological formations should be considered. However, geochemical challenges associated with hydrogen storage in sedimentary formations are still not well understood. Mineral dissolution and precipitation, as a result of hydrogen injection into the rocks not only can decrease the quality and the quantity of the stored hydrogen but may have an impact on the rock integrity as well. The Carpathian Pannonian region is rich in porous rocks, which could serve as hydrogen storage sites. However, many of them show various mineralogical compositions, which could behave differently under high hydrogen partial pressure. The main objective of our study is to predict geochemical reactions among rock-forming minerals, pore water and hydrogen. For this purpose, we apply analytical techniques and geochemical modeling.

The subject of this research is the Late Miocene Szolnok Sandstone Formation located in the Pannonian Basin, Carpathian-Pannonian Region. In the future this Formation can play a significant role in hydrogen storage, due to its favorable reservoir geological and petrophysical characteristics.

X-ray diffraction analyses were carried out, polished and thin sections were prepared for petrographic and geochemical analyses. The collected data were used in the PHREEQC modeling environment. In the first stage, equilibrium batch models were made to assess the potential long-term impacts of hydrogen on the reservoir rock and the effect of the geological environment. The modeling results of the project showed that hydrogen almost does not react with silicates (e.g., quartz). Possible hydrogen loss can occur due to redox reactions. Pyrite (FeS2) can react with hydrogen producing hydrogen sulfide (H2S) and since petrography has revealed that the studied sandstones have pyrite as accessory mineral.

  • 1

    Amid, A., Mignard, D., & Wilkinson, M. (2016) Seasonal storage of hydrogen in a depleted natural gas reservoir. International Journal of Hydrogen Energy, Vol. 41. No. 12. pp. 5549–5558. http://dx.doi.org/10.1016/j.ijhydene.2016.02.036

  • 2

    Bauer, S. (2017) Underground Sun Storage. Final Report. Vienna, 172 p.

  • 3

    Berta M., Király C., Lévai G., Falus G., Székely E., Szabó C., Sciarpetti G., & Zilahi-Sebess L. (2012) Szén-dioxid felszín alatti elhelyezése és az azt meghatározó geokémiai folyamatok előzetes vizsgálata pannon üledékes formációkon. Hungarian Geophys. Vol. 53. No. 4. pp. 258–266.

  • 4

    Bo, Z., Zeng, L., Chen, Y., & Xie, Q. (2021) Geochemical reactions-induced hydrogen loss during underground hydrogen storage in sandstone reservoirs. International Journal of Hydrogen Energy, Vol. 46. No. 28. pp. 19998–20009. https://doi.org/10.1016/j.ijhydene.2021.03.116

  • 5

    Carden, P. O., & Paterson, L. (1979) Physical, chemical and energy aspects of underground hydrogen storage. International Journal of Hydrogen Energy, Vol. 4. No. 6. pp. 559–569.

  • 6

    Cseresznyés D., Czuppon G., Király C., Demény A., Györe D., Forray V., Kovács I., Szabó C., & Falus G. (2021) Origin of dawsonite-forming fluids in the Mihályi-Répcelak field (Pannonian Basin) using stable H, C and O isotope compositions: Implication for mineral storage of carbon-dioxide. Chemical Geology, Vol. 584. 120536.

  • 7

    Feldmann F., Hagemann B., Ganzer L., & Panfilov M. (2016) Numerical simulation of hydrodynamic and gas mixing processes in underground hydrogen storages. Environmental Earth Sciences, Vol. 75. Article No. 1165.

  • 8

    Foh, S., Novil, M., Rockar, E., & Randolph, P. (1979) Underground hydrogen storage. Final report. [Salt caverns, excavated caverns, aquifers and depleted fields]. 283 p. http:/www.osti.gov/servlets/purl/6536941-eQcCso/;

  • 9

    Gelencsér O., Árvai C., Mika L. T., Breitner D., LeClair D., Szabó C., Falus G., & Szabó-Krausz Z. (2023) Effect of hydrogen on calcite reactivity in sandstone reservoirs: Experimental results compared to geochemical modeling predictions. Journal of Energy Storage, Vol. 61. pp. 1–6.

  • 10

    Gelencsér O., Szakács A., Gál Á., Szabó Á., Dankházi Z. Tóth T., Breitner D., Szabó-Krausz Zs., Szabó Cs., & Falus Gy. (2024) Microstructural study of the Praid Salt Diapir (Transylvanian basin, Romania) and its implication on deformation history and hydrogen storage potential. Acta Geodaetica et Geophysica, https://doi.org/10.1007/s40328-024-00436-z

  • 11

    Gundogan, O., Mackay, E., & Todd, A. (2011) Comparison of numerical codes for geochemical modelling of CO2 storage in target sandstone reservoirs. Chemical Engineering Research and Design, Vol. 89. No. 9. pp. 1805–1816. http://dx.doi.org/10.1016/j.cherd.2010.09.008

  • 12

    Heinemann, N., Alcalde, J., Miocic, J. M., Hangx, S. J. T., Kallmeyer, J., Ostertag-Henning, C., Hassanpouryouzband, A., Thaysen, E. M., Strobel, G. J., Schmidt-Hattenberger, C., Edlmann, K., Wilkinson, M., Bentham, M., Stuart Haszeldine, R., Carbonell, R., & Rudloff, A. (2021) Enabling large-scale hydrogen storage in porous media-the scientific challenges. Energy & Environmental Sciences, Vol. 14. No. 2. pp. 853–864.

  • 13

    Hemme C., & van Berk W. (2018) Hydrogeochemical modeling to identify potential risks of underground hydrogen storage in depleted gas fields. Applied Sciences, Vol. 8. No. 11. pp. 1–19.

  • 14

    Juhász G. (1994) Magyarországi neogén medencerészek pannóniai s.l. üledéksorának összehasonlító elemzése. Comparison of the sedimentary sequences in Late Neogene subbasins in the Pannonian Basin, Hungary. Földtani Közlöny, Vol. 124. No. 4. pp. 341–365. https://epa.oszk.hu/01600/01635/00277/pdf/EPA01635_foldtani_kozlony_1994_124_3_341-365.pdf

  • 15

    Juhász, G., & Thamóné Bozsó, E. (2006) The mineral composition of the Pannonian s.1. Formations in the Great Hungarian Plain (II). – Tendencies of the changes of the mineral composition of the Pannonian s.1. sands and sandstones and their geological significance (in Hungarian with English abstract). Földtani Közlöny, Vol. 136. No. 3. pp. 431–450.

  • 16

    Király A., Milota K., Magyar I., & Kiss K. (2010) Tight gas exploration in the Pannonian Basin. Proceedings of the 7th Petroleum Geology Conference, Vol. 7. pp. 1125–1129.

  • 17

    Király C., Szabó Z., Szamosfalvi Á., Kónya P., Szabó C., & Falus G. (2017) How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence? Energy Procedia, Vol. 125. pp. 527–534. http://dx.doi.org/10.1016/j.egypro.2017.08.180

  • 18

    Lehner M., Tichler R., & Koppe M. (2014) SpringerBriefs in Energy: Power-to-Gas Technology and Business Models. Springer. http://www.springer.com/series/8903

  • 19

    Lord A. S., Kobos P. H., & Borns D. J. (2014) Geologic storage of hydrogen: Scaling up to meet city transportation demands. International Journal of Hydrogen Energy, Vol. 39. No. 28. pp. 15570–15582. http://dx.doi.org/10.1016/j.ijhydene.2014.07.121

  • 20

    Lysyy M., Ersland G., & Fernø M. (2022) Pore-scale dynamics for underground porous media hydrogen storage. Advances in Water Resources, Vol. 163. 104067

  • 21

    Magyar I., Radivojević D., Sztanó O., Synak R., Ujszászi K., & Pócsik M. (2013) Progradation of the paleo-Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Global and Planetary Change, Vol. 103. pp. 168–173.

  • 22

    Markó Á., Mádl-Szőnyi J., & Brehme M. (2021) Injection related issues of a doublet system in a sandstone aquifer – A generalized concept to understand and avoid problem sources in geothermal systems. Geothermics, Vol. 97. 102234.

  • 23

    Mátyás J. and Matter A. (1997) Diagenetic Indicators of Meteoric Flow in the Pannonian Basin, Southeast Hungary. In: I. P. Montanez, J. M. Gregg, and K. L. Shelton (eds.) Basin-Wide Diagenetic Patterns: Integrated Petrologic, Geochemical, and Hydrologic Considerations. SEPM Society for Sedimentary Geology. pp. 281–296. https://doi.org/10.2110/pec.97.57.0281.

  • 24

    Parkhurst D. L., & Appelo C. A. J. (2013) Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Reston, VA: U.S. Geological Survey http://pubs.er.usgs.gov/publication/tm6A43

  • 25

    Sendula E., & Forray V. (2014) Szolnoki homokkőben CO2 injektálás hatására lejátszódó kőzet-pórusfluidum kölcsönhatás geokémiai modellezése. Budapest: Eötvös Loránd Tudományegyetem Földrajz- és Földtudomány Intézet

  • 26

    Snæbjörnsdóttir, S., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S. R., & Oelkers, E. H. (2020) Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment, Vol. 1. No. 2. pp. 90–102.

  • 27

    Szabó Z., Gál N. E., Kun É., Szőcs T., & Falus G. (2018) Accessing effects and signals of leakage from a CO2 reservoir to a shallow freshwater aquifer by reactive transport modelling. Environmental Earth Sciences, Vol. 77. No. 12. Article No. 460.

  • 28

    Szabó Z., Hegyfalvi C., Freiler-Nagy Á., Udvardi B., Kónya P., Király C., Székely E., & Falus G. (2019) Geochemical reactions of Na-montmorillonite in dissolved scCO2 in relevance of modeling caprock behavior in CO2 geological storage. Periodica Polytechnica Chemical Engineering, Vol. 63. No. 2. pp. 318–327.

  • 29

    Szabó Z., Hellevang H., Király C., Sendula E., Kónya P., Falus G., Török S. & Szabó C. (2016) Experimental-modelling geochemical study of potential CCS caprocks in brine and CO2-saturated brine. Int. J. Greenh. Gas Control, Vol. 44. pp. 262–275. http://dx.doi.org/10.1016/j.ijggc.2015.11.027

  • 30

    Sztanó O., Szafián P., Magyar I., Horányi A., Bada G., Hughes D. W., Hoyer D. L., & Wallis R. J. (2013) Aggradation and progradation controlled clinothems and deep-water sand delivery model in the Neogene Lake Pannon, Makó Trough, Pannonian Basin, SE Hungary. Global and Planetary Change, Vol. 103. pp. 149–167.

  • 31

    Tarkowski, R. (2017) Perspectives of using the geological subsurface for hydrogen storage in Poland. International Journal of Hydrogen Energy, Vol. 42. No. 1. pp. 347–355. http://dx.doi.org/10.1016/j.ijhydene.2016.10.136

  • 32

    Truche, L., Berger, G., Destrigneville, C., Guillaume, D., & Giffaut, E. (2010) Kinetics of Pyrite to Pyrrhotite Reduction by Hydrogen in Calcite Buffered Solutions between 90 and 180 °C: Implications for Nuclear Waste Disposal. Geochimica et Cosmochimica Acta, Vol. 74. No. 10. pp. 2894-2914. https://doi.org/10.1016/j.gca.2010.02.027

  • 33

    Truche, L., Jodin-Caumon, M. C., Lerouge, C., Berger, G., Mosser-Ruck, R., Giffaut, E., & Michau, N. (2013) Sulphide mineral reactions in clay-rich rock induced by high hydrogen pressure. Application to disturbed or natural settings up to 250 °C and 30 bar. Chemical Geology, Vol. 351. No. 5. pp. 217–228.

  • 34

    Yekta, A. E., Pichavant, M., & Audigane, P. (2018) Evaluation of geochemical reactivity of hydrogen in sandstone: Application to geological storage. Applied Geochemistry, Vol. 95. 182–194. https://doi.org/10.1016/j.apgeochem.2018.05.021

  • 35

    Zeng, L., Hosseini, M., Keshavarz, A., Iglauer, S., Lu, Y., & Xie, Q. (2022) Hydrogen wettability in carbonate reservoirs: Implication for underground hydrogen storage from geochemical perspective. International Journal of Hydrogen Energy, Vol. 47. No. 60. pp. 25357–25366. https://doi.org/10.1016/j.ijhydene.2022.05.289

  • Collapse
  • Expand

Editor-in-Chief:

Founding Editor-in-Chief:

  • Tamás NÉMETH

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (University of Pannonia)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)
  • Gergely DELI (University of Public Service)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • József HALLER (University of Public Service)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • János JÓZSA (Budapest University of Technology and Economics)
  • András KOLTAY (National Media and Infocommunications Authority)
  • Gábor KOVÁCS (University of Public Service)
  • Levente KOVÁCS buda University)
  • Melinda KOVÁCS (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós MARÓTH (Avicenna Institue of Middle Eastern Studies )
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • József PALLO (University of Public Service)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906
E-mail: scietsec@bm.gov.hu

DOAJ

2023  
CrossRef Documents 32
CrossRef Cites 15
Days from submission to acceptance 59
Days from acceptance to publication 104
Acceptance Rate 81%

2022  
CrossRef Documents 38
CrossRef Cites 10
Days from submission to acceptance 54
Days from acceptance to publication 78
Acceptance Rate 84%

2021  
CrossRef Documents 46
CrossRef Cites 0
Days from submission to acceptance 33
Days from acceptance to publication 85
Acceptance Rate 93%

2020  
CrossRef Documents 13
CrossRef Cites 0
Days from submission to acceptance 30
Days from acceptance to publication 62
Acceptance Rate 93%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
English
Size A4
Year of
Foundation
2020
Volumes
per Year
1
Issues
per Year
4
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
Founder's
Address
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
Applied
Licenses
CC-BY 4.0
CC-BY-NC 4.0
ISSN ISSN 2732-2688

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 0 0 0
May 2024 0 90 56
Jun 2024 0 45 16
Jul 2024 0 125 24
Aug 2024 0 67 24
Sep 2024 0 63 20
Oct 2024 0 80 5