Authors:
Tímea Nóra Török Budapesti Műszaki és Gazdaságtudományi Egyetem, Fizikai Intézet, Fizika Tanszék Budapest Magyarország; Budapest University of Technology and Economics, Institute of Physics, Department of Physics Budapest Hungary
HUN-REN Energiatudományi Kutatóközpont, Műszaki Fizikai és Anyagtudományi Intézet Budapest Magyarország; HUN-REN Centre for Energy Research, Institute of Technical Physics and Materials Science Budapest Hungary

Search for other papers by Tímea Nóra Török in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5238-5895
,
László Pósa Budapesti Műszaki és Gazdaságtudományi Egyetem, Fizikai Intézet, Fizika Tanszék Budapest Magyarország; Budapest University of Technology and Economics, Institute of Physics, Department of Physics Budapest Hungary
HUN-REN Energiatudományi Kutatóközpont, Műszaki Fizikai és Anyagtudományi Intézet Budapest Magyarország; HUN-REN Centre for Energy Research, Institute of Technical Physics and Materials Science Budapest Hungary

Search for other papers by László Pósa in
Current site
Google Scholar
PubMed
Close
,
Dániel Molnár Budapesti Műszaki és Gazdaságtudományi Egyetem, Fizikai Intézet, Fizika Tanszék Budapest Magyarország; Budapest University of Technology and Economics, Institute of Physics, Department of Physics Budapest Hungary
HUN-REN-BME Kondenzált Anyagok Fizikája Kutatócsoport Budapest Magyarország; HUN-REN-BME Condensed Matter Research Group Budapest Hungary

Search for other papers by Dániel Molnár in
Current site
Google Scholar
PubMed
Close
,
János Gergő Fehérvári Budapesti Műszaki és Gazdaságtudományi Egyetem, Fizikai Intézet, Fizika Tanszék Budapest Magyarország; Budapest University of Technology and Economics, Institute of Physics, Department of Physics Budapest Hungary

Search for other papers by János Gergő Fehérvári in
Current site
Google Scholar
PubMed
Close
,
Roland Kövecs Budapesti Műszaki és Gazdaságtudományi Egyetem, Fizikai Intézet, Fizika Tanszék Budapest Magyarország; Budapest University of Technology and Economics, Institute of Physics, Department of Physics Budapest Hungary

Search for other papers by Roland Kövecs in
Current site
Google Scholar
PubMed
Close
,
Zoltán Balogh Budapesti Műszaki és Gazdaságtudományi Egyetem, Fizikai Intézet, Fizika Tanszék Budapest Magyarország; Budapest University of Technology and Economics, Institute of Physics, Department of Physics Budapest Hungary

Search for other papers by Zoltán Balogh in
Current site
Google Scholar
PubMed
Close
,
János Volk HUN-REN Energiatudományi Kutatóközpont, Műszaki Fizikai és Anyagtudományi Intézet Budapest Magyarország; HUN-REN Centre for Energy Research, Institute of Technical Physics and Materials Science Budapest Hungary
Védelmi Innovációs Kutatóintézet Budapest Magyarország; Defence Innovation Research Institute Budapest Hungary

Search for other papers by János Volk in
Current site
Google Scholar
PubMed
Close
, and
András Halbritter Budapesti Műszaki és Gazdaságtudományi Egyetem, Fizikai Intézet, Fizika Tanszék Budapest Magyarország; Budapest University of Technology and Economics, Institute of Physics, Department of Physics Budapest Hungary
HUN-REN-BME Kondenzált Anyagok Fizikája Kutatócsoport Budapest Magyarország; HUN-REN-BME Condensed Matter Research Group Budapest Hungary

Search for other papers by András Halbritter in
Current site
Google Scholar
PubMed
Close
Open access

Összefoglalás.

Napjainkra az információs technológiák fejlődése elérte azt a szintet, ahol a gyorsuló ütemben létrejövő adattömeg feldolgozásához már sok esetben elégtelenek a klasszikus, Neumann-elvek alapján működő számítógépek. A jelenség újszerű szoftveres megoldások, biológiai ihletésű algoritmusok, neurális hálózatok elterjedéséhez vezetett, ám ezek hatékony alkalmazásához teljesen új hardveres megoldások szükségesek. Jelen kézirat ilyen újszerű architektúrákhoz fejlesztett, Si-mikrochip-alapú memóriatulajdonsággal rendelkező nanoméretű áramköri elemek kísérleti eredményeit mutatja be, illetve azok egy-egy specifikus információfeldolgozási feladatra történő alkalmazhatóságával foglalkozik.

Summary.

Resistive switching memory devices, also known as memristors, are generally metal-insulator-metal nanostructures whose conductivity can be varied via electrical signals, enabling information storage in the value of the conductivity. Based on this property, memristive devices provide a promising platform for hardware-level encoding of large matrices. With a network of memristors, computationally intensive vector-matrix operations can be performed in a single step, considerably speeding up the operation of an artificial neural network (ANN). Memristors can also serve as real physical building blocks for biologically inspired algorithms through their neuromorphic properties. Via building simple circuits, such devices can be used to create oscillators or artificial neurons, which can be utilized for the implementation of oscillatory neural networks (ONN) or spiking neural networks (SNN). Another interesting feature of these memristive neuromorphic circuits is that they can be directly used for information processing tasks at the edge of a network. Memristors facilitate such edge computing applications which usually require energy-efficient operation and small size of the processor unit. Edge computing approaches have several advantages over centralized data processing from the aspect of security, e.g., significantly reducing time latency of sending large amounts of data to a central hub, and by processing sensitive data locally and independently of the central servers.

Present work focuses on the experimental investigation of purpose-built nanoscale memristive devices, revealing their physical processes. A superconducting spectroscopy measurement technique is developed for the non-destructive detection of atomic scale memristive filaments during device operation (Török et al. 2020; Török et al. 2023). In addition, the tunable stochasticity of the nucleation process is revealed by statistical studies of the set process in silicon oxide memristors (Török et al. 2022). This finding provides a basis for the physical realization of neural activation functions, stochastically firing neurons or energy-efficient true random number generation. Finally, the applicability of the investigated nanoscale memristive devices is illustrated through two examples. The concept of a neuromorphic, memristor-based auditory sensing unit is presented, leading towards medical application in a fully implantable cochlear implant. Last, the feasibility of a hardware-level stochastic optimization procedure is introduced (Fehérvári et al. 2023), based entirely on memristive elements, utilizing tunable noise characteristics of the devices (Sánta et al. 2021).

  • 1

    Ambrogio, S., Magyari-Köpe, B., Onofrio, N., Mahbubul Islam, M., Duncan, D., Nishi, Y., & Strachan, A. (2017) Modeling resistive switching materials and devices across scales. Journal of Electroceramics, Vol. 39. pp. 39–60. https://doi.org/10.1007/s10832-017-0093-y

  • 2

    Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., Di Nolfo, C., … & Burr, G. W. (2018) Equivalent-accuracy accelerated neural-network training using analogue memory. Nature, Vol. 558. No. 7708. pp. 60–67. https://doi.org/10.1038/s41586-018-0180-5

  • 3

    Cai, F., Kumar, S., Van Vaerenbergh, T., Sheng, X., Liu, R., Li, C., ... & Strachan, J. P. (2020). Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks. Nature Electronics, Vol. 3 No. 7. pp. 409-418. https://doi.org/10.1038/s41928-020-0436-6

  • 4

    Fehérvári J. G. (2020) Nanoméretű fázisváltó memóriák időskáláinak kísérleti vizsgálata. BME, TTK kari TDK dolgozat.

  • 5

    Fehérvári J. G. (2021) Sztochasztikus jelenségek rezisztív kapcsoló memóriákban. BME, TTK kari szakdolgozat.

  • 6

    Fehérvári J. G. (2022) Sztochasztikus optimalizáció hangolható zajforrásként működő memrisztorok segítségével. BME, TTK kari TDK dolgozat.

  • 7

    Fehérvári, J. G., Balogh, Z., Török, T. N., & Halbritter, A. (2023) Noise tailoring, noise annealing and external noise injection strategies in memristive Hopfield neural networks. arXiv preprint. https://arxiv.org/abs/2307.12111

  • 8

    Kövecs A. R. (2022) Neurális dinamikával rendelkező memrisztor alapú detektoráramkör megvalósítása. BME, TTK kari TDK dolgozat.

  • 9

    Kövecs A. R. (2023) Memrisztor-alapú jelfeldolgozó egység tervezése cochleáris implantátumokhoz. BME, TTK kari szakdolgozat.

  • 10

    Kumar, S., Wang, X., Strachan, J. P., Yang, Y., & Lu, W. D. (2022) Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials, Vol. 7. No. 7. pp. 575–591. https://doi.org/10.1038/s41578-022-00434-z

  • 11

    Molnár, D., Török, T. N., Kövecs, R., Pósa, L., Balázs, P., Molnár, G., … & Halbritter, A. (2023) Autonomous neural information processing by a dynamical memristor circuit. arXiv preprint. https://arxiv.org/abs/2307.13320

  • 12

    Moon, J., Ma, W., Shin, J. H., Cai, F., Du, C., Lee, S. H., & Lu, W. D. (2019) Temporal data classification and forecasting using a memristor-based reservoir computing system. Nature Electronics, Vol. 2. No. 10. pp. 480–487. https://doi.org/10.1038/s41928-019-0313-3

  • 13

    Pósa, L., El Abbassi, M., Makk, P., Sánta, B., Nef, C., Csontos, M., … & Halbritter, A. (2017) Multiple physical time scales and dead time rule in few-nanometers sized graphene–SiOx–graphene memristors. Nano Letters, Vol. 17. No. 11. pp. 6783–6789. https://doi.org/10.1021/acs.nanolett.7b03000

  • 14

    Pósa, L., Hornung, P., Török, T. N., Schmid, S. W., Arjmandabasi, S., Molnár, G., … & Volk, J. (2023) Interplay of Thermal and Electronic Effects in the Mott Transition of Nanosized VO2 Phase Change Memory Devices. ACS Applied Nano Materials, Vol. 6. No. 11. pp. 9137–9147. https://doi.org/10.1021/acsanm.3c00150

  • 15

    Rao, M., Tang, H., Wu, J., Song, W., Zhang, M., Yin, W., … & Yang, J. J. (2023) Thousands of conductance levels in memristors integrated on CMOS. Nature, Vol. 615. No. 7954. pp. 823–829. https://doi.org/10.1038/s41586-023-05759-5

  • 16

    Sánta, B., Balogh, Z., Pósa, L., Krisztián, D., Török, T. N., Molnár, D., … & Halbritter, A. (2021) Noise tailoring in memristive filaments. ACS Applied Materials & Interfaces, Vol. 13. No. 6. pp. 7453–7460. https://doi.org/10.1021/acsami.0c21156

  • 17

    Sawa, A. (2008) Resistive switching in transition metal oxides. Materials Today, Vol. 11. No. 6. pp. 28–36. https://doi.org/10.1016/S1369-7021(08)70119-6

  • 18

    Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., & Eleftheriou, E. (2020) Memory devices and applications for in-memory computing. Nature Nanotechnology, Vol. 15. No. 7. pp. 529–544. https://doi.org/10.1038/s41565-020-0655-z

  • 19

    Török, T. N., Csontos, M., Makk, P., & Halbritter, A. (2020) Breaking the quantum PIN code of atomic synapses. Nano Letters, Vol. 20. No. 2. pp. 1192–1200. https://doi.org/10.1021/acs.nanolett.9b04617

  • 20

    Török, T. N., Fehérvári, J. G., Mészáros, G., Pósa, L., & Halbritter, A. (2022) Tunable, Nucleation-Driven Stochasticity in Nanoscale Silicon Oxide Resistive Switching Memory Devices. ACS Applied Nano Materials, Vol. 5. No. 5. pp. 6691–6698. https://doi.org/10.1021/acsanm.2c00722

  • 21

    Török, T. N., Makk, P., Balogh, Z., Csontos, M., & Halbritter, A. (2023) Quantum Transport Properties of Nanosized Ta2O5 Resistive Switches: Variable Transmission Atomic Synapses for Neuromorphic Electronics. ACS Applied Nano Materials. Vol. 6. No. 22. pp. 21340–21349. https://doi.org/10.1021/acsanm.3c04769

  • 22

    Udvardi, P., Radó, J., Straszner, A., Ferencz, J., Hajnal, Z., Soleimani, S., ... & Volk, J. (2017). Spiral-shaped piezoelectric MEMS cantilever array for fully implantable hearing systems. Micromachines, Vol. 8. No. 10. pp. 311. https://doi.org/10.3390/mi8100311

  • 23

    Wang, Z., Wu, H., Burr, G. W., Hwang, C. S., Wang, K. L., Xia, Q., & Yang, J. J. (2020) Resistive switching materials for information processing. Nature Reviews Materials, Vol. 5. No. 3. pp. 173–195. https://doi.org/10.1038/s41578-019-0159-3

  • 24

    Yang, J. J., Strukov, D. B., & Stewart, D. R. (2013) Memristive devices for computing. Nature Nanotechnology, Vol. 8. No. 1. pp. 13–24. https://doi.org/10.1038/nnano.2012.240

  • 25

    Yi, W., Tsang, K. K., Lam, S. K., Bai, X., Crowell, J. A., & Flores, E. A. (2018) Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nature Communications, Vol. 9. No. 1. Article No. 4661. https://doi.org/10.1038/s41467-018-07052-w

  • 26

    Yuan, R., Duan, Q., Tiw, P. J., Li, G., Xiao, Z., Jing, Z., … & Yang, Y. (2022) A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system. Nature Communications, Vol. 13. No. 1. Article No. 3973. https://doi.org/10.1038/s41467-022-31747-w

  • 27

    Zidan, M. A., Strachan, J. P., & Lu, W. D. (2018) The future of electronics based on memristive systems. Nature Electronics, Vol. 1. No. 1. pp. 22–29. https://doi.org/10.1038/s41928-017-0006-8

  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the Hungarian version from HERE, the English version from HERE.
The Submissions templates are available in MS Word.
For articles in Hungarian, please download it from HERE and for articles in English from HERE.

 

Editor-in-Chief:

Founding Editor-in-Chief:

  • Tamás NÉMETH

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (University of Pannonia)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)
  • Gergely DELI (University of Public Service)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • József HALLER (University of Public Service)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • János JÓZSA (Budapest University of Technology and Economics)
  • András KOLTAY (National Media and Infocommunications Authority)
  • Gábor KOVÁCS (University of Public Service)
  • Levente KOVÁCS buda University)
  • Melinda KOVÁCS (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós MARÓTH (Avicenna Institue of Middle Eastern Studies )
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • József PALLO (University of Public Service)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906
E-mail: scietsec@bm.gov.hu

DOAJ

2023  
CrossRef Documents 32
CrossRef Cites 15
Days from submission to acceptance 59
Days from acceptance to publication 104
Acceptance Rate 81%

2022  
CrossRef Documents 38
CrossRef Cites 10
Days from submission to acceptance 54
Days from acceptance to publication 78
Acceptance Rate 84%

2021  
CrossRef Documents 46
CrossRef Cites 0
Days from submission to acceptance 33
Days from acceptance to publication 85
Acceptance Rate 93%

2020  
CrossRef Documents 13
CrossRef Cites 0
Days from submission to acceptance 30
Days from acceptance to publication 62
Acceptance Rate 93%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
English
Size A4
Year of
Foundation
2020
Volumes
per Year
1
Issues
per Year
4
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
Founder's
Address
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
Applied
Licenses
CC-BY 4.0
CC-BY-NC 4.0
ISSN ISSN 2732-2688

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 0 0 0
May 2024 0 0 0
Jun 2024 0 0 0
Jul 2024 0 0 0
Aug 2024 0 212 34
Sep 2024 0 34 18
Oct 2024 0 0 0