Összefoglalás.
Napjainkra az információs technológiák fejlődése elérte azt a szintet, ahol a gyorsuló ütemben létrejövő adattömeg feldolgozásához már sok esetben elégtelenek a klasszikus, Neumann-elvek alapján működő számítógépek. A jelenség újszerű szoftveres megoldások, biológiai ihletésű algoritmusok, neurális hálózatok elterjedéséhez vezetett, ám ezek hatékony alkalmazásához teljesen új hardveres megoldások szükségesek. Jelen kézirat ilyen újszerű architektúrákhoz fejlesztett, Si-mikrochip-alapú memóriatulajdonsággal rendelkező nanoméretű áramköri elemek kísérleti eredményeit mutatja be, illetve azok egy-egy specifikus információfeldolgozási feladatra történő alkalmazhatóságával foglalkozik.
Summary.
Resistive switching memory devices, also known as memristors, are generally metal-insulator-metal nanostructures whose conductivity can be varied via electrical signals, enabling information storage in the value of the conductivity. Based on this property, memristive devices provide a promising platform for hardware-level encoding of large matrices. With a network of memristors, computationally intensive vector-matrix operations can be performed in a single step, considerably speeding up the operation of an artificial neural network (ANN). Memristors can also serve as real physical building blocks for biologically inspired algorithms through their neuromorphic properties. Via building simple circuits, such devices can be used to create oscillators or artificial neurons, which can be utilized for the implementation of oscillatory neural networks (ONN) or spiking neural networks (SNN). Another interesting feature of these memristive neuromorphic circuits is that they can be directly used for information processing tasks at the edge of a network. Memristors facilitate such edge computing applications which usually require energy-efficient operation and small size of the processor unit. Edge computing approaches have several advantages over centralized data processing from the aspect of security, e.g., significantly reducing time latency of sending large amounts of data to a central hub, and by processing sensitive data locally and independently of the central servers.
Present work focuses on the experimental investigation of purpose-built nanoscale memristive devices, revealing their physical processes. A superconducting spectroscopy measurement technique is developed for the non-destructive detection of atomic scale memristive filaments during device operation (Török et al. 2020; Török et al. 2023). In addition, the tunable stochasticity of the nucleation process is revealed by statistical studies of the set process in silicon oxide memristors (Török et al. 2022). This finding provides a basis for the physical realization of neural activation functions, stochastically firing neurons or energy-efficient true random number generation. Finally, the applicability of the investigated nanoscale memristive devices is illustrated through two examples. The concept of a neuromorphic, memristor-based auditory sensing unit is presented, leading towards medical application in a fully implantable cochlear implant. Last, the feasibility of a hardware-level stochastic optimization procedure is introduced (Fehérvári et al. 2023), based entirely on memristive elements, utilizing tunable noise characteristics of the devices (Sánta et al. 2021).
Ambrogio, S., Magyari-Köpe, B., Onofrio, N., Mahbubul Islam, M., Duncan, D., Nishi, Y., & Strachan, A. (2017) Modeling resistive switching materials and devices across scales. Journal of Electroceramics, Vol. 39. pp. 39–60. https://doi.org/10.1007/s10832-017-0093-y
Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., Di Nolfo, C., … & Burr, G. W. (2018) Equivalent-accuracy accelerated neural-network training using analogue memory. Nature, Vol. 558. No. 7708. pp. 60–67. https://doi.org/10.1038/s41586-018-0180-5
Cai, F., Kumar, S., Van Vaerenbergh, T., Sheng, X., Liu, R., Li, C., ... & Strachan, J. P. (2020). Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks. Nature Electronics, Vol. 3 No. 7. pp. 409-418. https://doi.org/10.1038/s41928-020-0436-6
Fehérvári J. G. (2020) Nanoméretű fázisváltó memóriák időskáláinak kísérleti vizsgálata. BME, TTK kari TDK dolgozat.
Fehérvári J. G. (2021) Sztochasztikus jelenségek rezisztív kapcsoló memóriákban. BME, TTK kari szakdolgozat.
Fehérvári J. G. (2022) Sztochasztikus optimalizáció hangolható zajforrásként működő memrisztorok segítségével. BME, TTK kari TDK dolgozat.
Fehérvári, J. G., Balogh, Z., Török, T. N., & Halbritter, A. (2023) Noise tailoring, noise annealing and external noise injection strategies in memristive Hopfield neural networks. arXiv preprint. https://arxiv.org/abs/2307.12111
Kövecs A. R. (2022) Neurális dinamikával rendelkező memrisztor alapú detektoráramkör megvalósítása. BME, TTK kari TDK dolgozat.
Kövecs A. R. (2023) Memrisztor-alapú jelfeldolgozó egység tervezése cochleáris implantátumokhoz. BME, TTK kari szakdolgozat.
Kumar, S., Wang, X., Strachan, J. P., Yang, Y., & Lu, W. D. (2022) Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials, Vol. 7. No. 7. pp. 575–591. https://doi.org/10.1038/s41578-022-00434-z
Molnár, D., Török, T. N., Kövecs, R., Pósa, L., Balázs, P., Molnár, G., … & Halbritter, A. (2023) Autonomous neural information processing by a dynamical memristor circuit. arXiv preprint. https://arxiv.org/abs/2307.13320
Moon, J., Ma, W., Shin, J. H., Cai, F., Du, C., Lee, S. H., & Lu, W. D. (2019) Temporal data classification and forecasting using a memristor-based reservoir computing system. Nature Electronics, Vol. 2. No. 10. pp. 480–487. https://doi.org/10.1038/s41928-019-0313-3
Pósa, L., El Abbassi, M., Makk, P., Sánta, B., Nef, C., Csontos, M., … & Halbritter, A. (2017) Multiple physical time scales and dead time rule in few-nanometers sized graphene–SiOx–graphene memristors. Nano Letters, Vol. 17. No. 11. pp. 6783–6789. https://doi.org/10.1021/acs.nanolett.7b03000
Pósa, L., Hornung, P., Török, T. N., Schmid, S. W., Arjmandabasi, S., Molnár, G., … & Volk, J. (2023) Interplay of Thermal and Electronic Effects in the Mott Transition of Nanosized VO2 Phase Change Memory Devices. ACS Applied Nano Materials, Vol. 6. No. 11. pp. 9137–9147. https://doi.org/10.1021/acsanm.3c00150
Rao, M., Tang, H., Wu, J., Song, W., Zhang, M., Yin, W., … & Yang, J. J. (2023) Thousands of conductance levels in memristors integrated on CMOS. Nature, Vol. 615. No. 7954. pp. 823–829. https://doi.org/10.1038/s41586-023-05759-5
Sánta, B., Balogh, Z., Pósa, L., Krisztián, D., Török, T. N., Molnár, D., … & Halbritter, A. (2021) Noise tailoring in memristive filaments. ACS Applied Materials & Interfaces, Vol. 13. No. 6. pp. 7453–7460. https://doi.org/10.1021/acsami.0c21156
Sawa, A. (2008) Resistive switching in transition metal oxides. Materials Today, Vol. 11. No. 6. pp. 28–36. https://doi.org/10.1016/S1369-7021(08)70119-6
Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., & Eleftheriou, E. (2020) Memory devices and applications for in-memory computing. Nature Nanotechnology, Vol. 15. No. 7. pp. 529–544. https://doi.org/10.1038/s41565-020-0655-z
Török, T. N., Csontos, M., Makk, P., & Halbritter, A. (2020) Breaking the quantum PIN code of atomic synapses. Nano Letters, Vol. 20. No. 2. pp. 1192–1200. https://doi.org/10.1021/acs.nanolett.9b04617
Török, T. N., Fehérvári, J. G., Mészáros, G., Pósa, L., & Halbritter, A. (2022) Tunable, Nucleation-Driven Stochasticity in Nanoscale Silicon Oxide Resistive Switching Memory Devices. ACS Applied Nano Materials, Vol. 5. No. 5. pp. 6691–6698. https://doi.org/10.1021/acsanm.2c00722
Török, T. N., Makk, P., Balogh, Z., Csontos, M., & Halbritter, A. (2023) Quantum Transport Properties of Nanosized Ta2O5 Resistive Switches: Variable Transmission Atomic Synapses for Neuromorphic Electronics. ACS Applied Nano Materials. Vol. 6. No. 22. pp. 21340–21349. https://doi.org/10.1021/acsanm.3c04769
Udvardi, P., Radó, J., Straszner, A., Ferencz, J., Hajnal, Z., Soleimani, S., ... & Volk, J. (2017). Spiral-shaped piezoelectric MEMS cantilever array for fully implantable hearing systems. Micromachines, Vol. 8. No. 10. pp. 311. https://doi.org/10.3390/mi8100311
Wang, Z., Wu, H., Burr, G. W., Hwang, C. S., Wang, K. L., Xia, Q., & Yang, J. J. (2020) Resistive switching materials for information processing. Nature Reviews Materials, Vol. 5. No. 3. pp. 173–195. https://doi.org/10.1038/s41578-019-0159-3
Yang, J. J., Strukov, D. B., & Stewart, D. R. (2013) Memristive devices for computing. Nature Nanotechnology, Vol. 8. No. 1. pp. 13–24. https://doi.org/10.1038/nnano.2012.240
Yi, W., Tsang, K. K., Lam, S. K., Bai, X., Crowell, J. A., & Flores, E. A. (2018) Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nature Communications, Vol. 9. No. 1. Article No. 4661. https://doi.org/10.1038/s41467-018-07052-w
Yuan, R., Duan, Q., Tiw, P. J., Li, G., Xiao, Z., Jing, Z., … & Yang, Y. (2022) A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system. Nature Communications, Vol. 13. No. 1. Article No. 3973. https://doi.org/10.1038/s41467-022-31747-w
Zidan, M. A., Strachan, J. P., & Lu, W. D. (2018) The future of electronics based on memristive systems. Nature Electronics, Vol. 1. No. 1. pp. 22–29. https://doi.org/10.1038/s41928-017-0006-8