A döntéshozatal és annak módja a gazdaság egyik legfontosabb eleme. A mindennapi döntések soha nem a tényleges helyzetek, hanem az észlelt helyzetek alapján születnek. A vezetői döntések előkészítésében, a gazdasági elemzések és az adatelemzések mögött a matematikai ismeretek állnak. Az emberek matematikai problémamegoldási képességét számos külső és belső tényező befolyásolja. Jelen kutatás online kérdőív használatával történő adatfelvételt követő elemzés eredményeit mutatja be a matematikával kapcsolatos attitűdök, a tanulási élmények és a matematikai teljesítmény tapasztalatain keresztül. A kutatás az első lépés a matematika és a döntéshozatal kapcsolatának átfogó vizsgálatában. A kutatás célja a matematikaoktatás jelentőségének megértése a döntési képességek fejlesztésében, amelynek kulcsszerepe van a kritikus gondolkodás és problémamegoldó képesség fejlesztésében.
Decision-making and the way it is done is one of the most important elements of economy. Practice shows that although formal frameworks for decision-making are established in most companies, everyday decisions are never taken on the basis of actual situations, but on the basis of perceived situations. Perhaps not surprisingly, the biggest challenge of the 21st century is how the economic systems that define the national and global supply chain can become sustainable. It is requiring the creation of well-informed choices which based on people’s decision-making skills.
Mathematical knowledge is the essence in the preparation of management decisions, behind the economic analyses, and behind the data analyses. However, few people understand the secret of this knowledge. We have spent in this area of education the most time and effort on, yet it is accompanied by many failures. The skill of people to solve mathematical problems is influenced by several external and internal factors. In the 20th century, much research focused only on external factors, learning and teaching methods or strategies. In fact, internal factors also play a fairly large role in the skill to solve problems, especially mathematical problem solving which is inherently more than a routine application of what is learnt. Therefore, requires a higher level of understanding which in turn can lead to internal conflicts in humans which influence decision making processes in a bad way.
Throughout the history of science, mathematics and mathematical thinking have played a crucial role as symbols of rationality and logical reasoning. In the context of decision-making, mathematics is regarded positively and holds significant importance. It underpins management decisions, economic analyses, and data analysis. However, truly grasping this knowledge remains a challenge for only a select few. Education devotes extensive time (in Hungary, 12 years in general) to this field, yet it is still accompanied by numerous difficulties and shortcomings. This raises a valid question about the impact of mathematics on the decision-making skills of managers. While these systems support decision-making, they may not be the sole catalyst for it. When it comes to mathematics on its own, people have mixed feelings – some love it, while others try to avoid it at all costs. Nevertheless, everyone acknowledges that math skills are indispensable.
This research represents the first step in a comprehensive study of the relationship between mathematics and decision-making, as well as an examination of mathematical skills. The aim is to understand the connection between mathematics and decision theory and to highlight the importance of the quality of mathematical education in the development of decision-making skills. The challenge lies in maintaining a positive relationship with math.
Ainley, J. (1995) Re-viewing graphing: Traditional and intuitive approaches. For the Learning of Mathematics, Vol. 15. No. 2. pp. 10–16.
Ashcraft, M. H., & Kirk, E. P. (2001) The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, Vol. 130. No. 2. pp. 224–237.
Ashcraft, M. H., & Krause, J. A. (2007) Working memory, math performance, and math anxiety. Psychonomic Bulletin & Review, Vol. 14. No. 2. pp. 243–248.
Ashcraft, M. H., & Ridley, K. S. (2005) Math anxiety and its cognitive consequences: A tutorial review. In: J. D. Campbell (ed.). Handbook of mathematical cognition. New York, NY: Psychology Press. pp. 315–327.
Balázsi I., Rábainé Szabó A., Szabó V., & Szepesi I. (2005) A 2004-es Országos kompetenciamérés eredményei. Új Pedagógiai Szemle, Vol. 55. No. 12. pp. 3–21.
Beilock, S. L., Kulp, C. A., Holt, L. E., & Carr, T. H. (2004) More on the fragility of performance: choking under pressure in mathematical problem solving. Journal of Experimental Psychology: General, Vol. 133. No. 4. pp. 584–600.
Ben Zvi, D., & Arcavi, A. (2001) Junior high school students’ construction of global views of data and data representations. Educational Studies in Mathematics, Vol. 45, pp. 35–65.
Börner, K., Bueckle, A., & Ginda, M. (2019) Data visualization literacy: Definitions, conceptual frameworks, exercises, and assessments. Proceedings of the National Academy of Sciences of the United States of America, Vol. 116. No. 6. pp. 1857–1864.
Curcio, F. (1987) Comprehension of mathematical relationships expressed in graphs. Journal for Research in Mathematics Education, Vol. 18. pp. 382–393.
Csapó B. (2003) A tudás és a kompetenciák. In: A tanulás fejlesztése. Országos Közoktatási Intézet (OKI), Budapest, pp. 65–74. https://publicatio.bibl.u-szeged.hu/11274/
Csapó B. (2012) Mérlegen a magyar iskola. Budapest, Nemzeti Tankönyvkiadó
Dourish, P., & Gómez Cruz, E. (2018) Datafication and data fiction: Narrating data and narrating with data. Big Data & Society, Vol. 5. No. 2. pp. 1–10.
Engländer T. (1999) Viaskodás a bizonytalannal. Budapest, Akadémiai Kiadó
Farkas-Kis, M. (2022) Decision making in the shadow of mathematical education. Journal of Decision Systems, Supplement 1. pp. 168–180.
Friel, S. N., Curcio, F. R., & Bright, G. W. (2001) Making sense of graphs: Critical factors influencing comprehension and instructional implications. Journal for Research in Mathematics Education, Vol. 32. No. 2. pp. 124–158.
Galesic, M., & Garcia-Retamero, R. (2011) Graph literacy: A cross-cultural comparison. Journal of Medical Decision Making, Vol. 31. No. 3. pp. 444–457.
Gardner, H. (1983) Frames of Mind: The Theory of Multiple Intelligences. New York, Basic Books
Glazer, N. (2011) Challenges with graph interpretation: A review of the literature. Studies in Science Education, Vol. 47. No. 2. pp. 183–210.
Hidi, S. (1990) Interest and its contribution as a mental resource for learning. Review of Educational Research, Vol. 60. No. 4. pp. 549–571.
Józsa K., & Fejes J. B. (2012) A tanulás affektív tényezői. In: Csapó B. (szerk.). Mérlegen a magyar iskola. Budapest, Nemzeti Tankönyvkiadó, pp. 367–406.
Kim, S., Jiang, Y., & Song, J. (2015) The effects of interest and utility value on mathematics engagement and achievement. In: K. A. Renninger, M. Nieswandt, & S. Hidi (eds). Interest in mathematics and science learning. Washington, DC: American Educational Research Association, pp. 63–78.
Kumar, G., & Karimi, A. (2010) Mathematics Anxiety, Mathematics Performance and Overall Academic Performance in High School Students. Journal of the Indian Academy of Applied Psychology, Vol. 36. pp. 147–150.
Laurie H. R., Nicol, C., & Chronaki, A. (2021) A critical mathematics perspective on reading data visualizations: reimagining through reformatting, reframing, and renarrating. Educational Studies in Mathematics. Vol. 108. pp. 249–268.
Lee, S., Kim, S. H., Hung, Y. H., Lam, H., Kang, Y. A., & Yi, J. S. (2016) How do people make sense of unfamiliar visualizations? A grounded model of novice’s information visualization sensemaking. IEEE Transactions on Visualization and Computer Graphics, Vol. 22. No. 1. pp. 499–508.
Loukissas, Y. A. (2019) All data are local: Thinking critically in a data-driven society. MIT Press
Mammarella, I. C., Hill, F., Devine, A., Caviola, S., & Szűcs, D. (2015) Math anxiety and developmental dyscalculia: A study on working memory processes. Journal of Clinical and Experimental Neuropsychology, Vol. 37. No. 8. pp. 878–887.
Márkus A. (2007) Számok, számolás, számolászavarok. Budapest: Pro Die Kiadó
Nagy J. (1973) Alapmûveleti számolási készségek. Standardizált készségmérõ tesztek 1. Acta Universitatis Szegediensis de Attila József Nominatae, Sectio Paedagogica, Series Specifica, Szeged.
Nagy J. (2000) XXI. század és nevelés. Budapest, Osiris Kiadó
PISA (2006) 2006 Összefoglaló jelentés. 2007 Budapest, Oktatási Hivatal. https://www.oktatas.hu/pub_bin/dload/kozoktatas/nemzetkozi_meresek/pisa/pisa2006_jelentes.pdf
Richardson, F. C., & Suinn, R. M. (1972) The mathematics anxiety rating scale: Psychometric data. Journal of Counseling Psychology, Vol. 19. No. 6. pp. 551–554.
Roberts, B. W., Kuncel, N. R., Shiner, R., Caspi, A., & Goldberg, L. R. (2007) The Power of Personality: The Comparative Validity of Personality Traits, Socioeconomic Status, and Cognitive Ability for Predicting Important Life Outcomes. Perspectives on Psychological Science, Vol. 2. No. 4. pp. 313–345.
Schiefele, U., & Csikszentmihalyi, M. (1995) Motivation and ability as factors in mathematics experience and achievement. Journal for Research in Mathematics Education, Vol. 26. No. 2. pp. 163–181.
Schiefele, U., Krapp, A., & Winteler, A. (1992) Interest as a predictor of academic achievement: A meta-analysis of research. In: K. A. Renninger, S Hidi, & A. Krapp (eds). The role of interest in learning and development. Hillsdale, NJ: Erlbaum, pp. 183–211.
Shah, P., & Hoeffner, J. (2002) Review of graph comprehension research: Implications for instruction. Educational Psychology Review, Vol. 14. pp. 47–69.
Shaughnessy, J. M. (2007) Research on statistics learning and reasoning. Second handbook of research on mathematics teaching and learning, 957–1009.
Singh, K., Granville, M., & Dika, S. (2002) Mathematics and science achievement: Effects of motivation, interest, and academic engagement. The Journal of Educational Research, Vol. 95. No. 6. pp. 323–332.
Skovsmose, O. (1994) Towards philosophy of critical mathematics education. Dordrecht: Kluwer Academic Publishers.
Spencer L. M., & Spencer S. M. (1993) Competence at work: models for superior performance. Wiley
Tversky, A., & Kahneman, D. (1991) A döntések megfogalmazása és a választás pszichológiája. In: Pápai Z., Nagy P. (szerk.). Döntéselméleti szöveggyűjtemény. Budapest, Aula Kiadó
Viljaranta, J., Lerkkanen, M. K., Poikkeus, A. M., Aunola, K., & Nurmi, J. E. (2009) Cross-lagged relations between task motivation and performance in arithmetic and literacy in kindergarten. Learning and Instruction, Vol. 19. No. 4. pp. 335–344.
Watson, J. M. (1997) Assessing statistical thinking using the media. In: I. Gal, & J. Garfield (eds). The assessment challenge in statistics education. IOS Press, pp. 107–121.
Watson, J. M., & Moritz, J. (1999) The beginning of statistical inference: Comparing two data sets. Educational Studies in Mathematics, Vol. 37. pp. 145–168.