Author:
Máté Farkas-Kis Budapesti Corvinus Egyetem, Budapest, Magyarország

Search for other papers by Máté Farkas-Kis in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9153-6243
Open access

A döntéshozatal és annak módja a gazdaság egyik legfontosabb eleme. A mindennapi döntések soha nem a tényleges helyzetek, hanem az észlelt helyzetek alapján születnek. A vezetői döntések előkészítésében, a gazdasági elemzések és az adatelemzések mögött a matematikai ismeretek állnak. Az emberek matematikai problémamegoldási képességét számos külső és belső tényező befolyásolja. Jelen kutatás online kérdőív használatával történő adatfelvételt követő elemzés eredményeit mutatja be a matematikával kapcsolatos attitűdök, a tanulási élmények és a matematikai teljesítmény tapasztalatain keresztül. A kutatás az első lépés a matematika és a döntéshozatal kapcsolatának átfogó vizsgálatában. A kutatás célja a matematikaoktatás jelentőségének megértése a döntési képességek fejlesztésében, amelynek kulcsszerepe van a kritikus gondolkodás és problémamegoldó képesség fejlesztésében.

Decision-making and the way it is done is one of the most important elements of economy. Practice shows that although formal frameworks for decision-making are established in most companies, everyday decisions are never taken on the basis of actual situations, but on the basis of perceived situations. Perhaps not surprisingly, the biggest challenge of the 21st century is how the economic systems that define the national and global supply chain can become sustainable. It is requiring the creation of well-informed choices which based on people’s decision-making skills.

Mathematical knowledge is the essence in the preparation of management decisions, behind the economic analyses, and behind the data analyses. However, few people understand the secret of this knowledge. We have spent in this area of education the most time and effort on, yet it is accompanied by many failures. The skill of people to solve mathematical problems is influenced by several external and internal factors. In the 20th century, much research focused only on external factors, learning and teaching methods or strategies. In fact, internal factors also play a fairly large role in the skill to solve problems, especially mathematical problem solving which is inherently more than a routine application of what is learnt. Therefore, requires a higher level of understanding which in turn can lead to internal conflicts in humans which influence decision making processes in a bad way.

Throughout the history of science, mathematics and mathematical thinking have played a crucial role as symbols of rationality and logical reasoning. In the context of decision-making, mathematics is regarded positively and holds significant importance. It underpins management decisions, economic analyses, and data analysis. However, truly grasping this knowledge remains a challenge for only a select few. Education devotes extensive time (in Hungary, 12 years in general) to this field, yet it is still accompanied by numerous difficulties and shortcomings. This raises a valid question about the impact of mathematics on the decision-making skills of managers. While these systems support decision-making, they may not be the sole catalyst for it. When it comes to mathematics on its own, people have mixed feelings – some love it, while others try to avoid it at all costs. Nevertheless, everyone acknowledges that math skills are indispensable.

This research represents the first step in a comprehensive study of the relationship between mathematics and decision-making, as well as an examination of mathematical skills. The aim is to understand the connection between mathematics and decision theory and to highlight the importance of the quality of mathematical education in the development of decision-making skills. The challenge lies in maintaining a positive relationship with math.

  • Ainley, J. (1995) Re-viewing graphing: Traditional and intuitive approaches. For the Learning of Mathematics, Vol. 15. No. 2. pp. 1016.

    • Search Google Scholar
    • Export Citation
  • Ashcraft, M. H., & Kirk, E. P. (2001) The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, Vol. 130. No. 2. pp. 224237.

    • Search Google Scholar
    • Export Citation
  • Ashcraft, M. H., & Krause, J. A. (2007) Working memory, math performance, and math anxiety. Psychonomic Bulletin & Review, Vol. 14. No. 2. pp. 243248.

    • Search Google Scholar
    • Export Citation
  • Ashcraft, M. H., & Ridley, K. S. (2005) Math anxiety and its cognitive consequences: A tutorial review. In: J. D. Campbell (ed.). Handbook of mathematical cognition. New York, NY: Psychology Press. pp. 315327.

    • Search Google Scholar
    • Export Citation
  • Balázsi I., Rábainé Szabó A., Szabó V., & Szepesi I. (2005) A 2004-es Országos kompetenciamérés eredményei. Új Pedagógiai Szemle, Vol. 55. No. 12. pp. 321.

    • Search Google Scholar
    • Export Citation
  • Beilock, S. L., Kulp, C. A., Holt, L. E., & Carr, T. H. (2004) More on the fragility of performance: choking under pressure in mathematical problem solving. Journal of Experimental Psychology: General, Vol. 133. No. 4. pp. 584600.

    • Search Google Scholar
    • Export Citation
  • Ben Zvi, D., & Arcavi, A. (2001) Junior high school students’ construction of global views of data and data representations. Educational Studies in Mathematics, Vol. 45, pp. 3565.

    • Search Google Scholar
    • Export Citation
  • Börner, K., Bueckle, A., & Ginda, M. (2019) Data visualization literacy: Definitions, conceptual frameworks, exercises, and assessments. Proceedings of the National Academy of Sciences of the United States of America, Vol. 116. No. 6. pp. 18571864.

    • Search Google Scholar
    • Export Citation
  • Curcio, F. (1987) Comprehension of mathematical relationships expressed in graphs. Journal for Research in Mathematics Education, Vol. 18. pp. 382393.

    • Search Google Scholar
    • Export Citation
  • Csapó B. (2003) A tudás és a kompetenciák. In: A tanulás fejlesztése. Országos Közoktatási Intézet (OKI), Budapest, pp. 6574. https://publicatio.bibl.u-szeged.hu/11274/

    • Search Google Scholar
    • Export Citation
  • Csapó B. (2012) Mérlegen a magyar iskola. Budapest, Nemzeti Tankönyvkiadó

  • Dourish, P., & Gómez Cruz, E. (2018) Datafication and data fiction: Narrating data and narrating with data. Big Data & Society, Vol. 5. No. 2. pp. 110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engländer T. (1999) Viaskodás a bizonytalannal. Budapest, Akadémiai Kiadó

  • Farkas-Kis, M. (2022) Decision making in the shadow of mathematical education. Journal of Decision Systems, Supplement 1. pp. 168180.

  • Friel, S. N., Curcio, F. R., & Bright, G. W. (2001) Making sense of graphs: Critical factors influencing comprehension and instructional implications. Journal for Research in Mathematics Education, Vol. 32. No. 2. pp. 124158.

    • Search Google Scholar
    • Export Citation
  • Galesic, M., & Garcia-Retamero, R. (2011) Graph literacy: A cross-cultural comparison. Journal of Medical Decision Making, Vol. 31. No. 3. pp. 444457.

    • Search Google Scholar
    • Export Citation
  • Gardner, H. (1983) Frames of Mind: The Theory of Multiple Intelligences. New York, Basic Books

  • Glazer, N. (2011) Challenges with graph interpretation: A review of the literature. Studies in Science Education, Vol. 47. No. 2. pp. 183210.

    • Search Google Scholar
    • Export Citation
  • Hidi, S. (1990) Interest and its contribution as a mental resource for learning. Review of Educational Research, Vol. 60. No. 4. pp. 549571.

    • Search Google Scholar
    • Export Citation
  • Józsa K., & Fejes J. B. (2012) A tanulás affektív tényezői. In: Csapó B. (szerk.). Mérlegen a magyar iskola. Budapest, Nemzeti Tankönyvkiadó, pp. 367406.

    • Search Google Scholar
    • Export Citation
  • Kim, S., Jiang, Y., & Song, J. (2015) The effects of interest and utility value on mathematics engagement and achievement. In: K. A. Renninger, M. Nieswandt, & S. Hidi (eds). Interest in mathematics and science learning. Washington, DC: American Educational Research Association, pp. 6378.

    • Search Google Scholar
    • Export Citation
  • Kumar, G., & Karimi, A. (2010) Mathematics Anxiety, Mathematics Performance and Overall Academic Performance in High School Students. Journal of the Indian Academy of Applied Psychology, Vol. 36. pp. 147150.

    • Search Google Scholar
    • Export Citation
  • Laurie H. R., Nicol, C., & Chronaki, A. (2021) A critical mathematics perspective on reading data visualizations: reimagining through reformatting, reframing, and renarrating. Educational Studies in Mathematics. Vol. 108. pp. 249268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., Kim, S. H., Hung, Y. H., Lam, H., Kang, Y. A., & Yi, J. S. (2016) How do people make sense of unfamiliar visualizations? A grounded model of novice’s information visualization sensemaking. IEEE Transactions on Visualization and Computer Graphics, Vol. 22. No. 1. pp. 499508.

    • Search Google Scholar
    • Export Citation
  • Loukissas, Y. A. (2019) All data are local: Thinking critically in a data-driven society. MIT Press

  • Mammarella, I. C., Hill, F., Devine, A., Caviola, S., & Szűcs, D. (2015) Math anxiety and developmental dyscalculia: A study on working memory processes. Journal of Clinical and Experimental Neuropsychology, Vol. 37. No. 8. pp. 878887.

    • Search Google Scholar
    • Export Citation
  • Márkus A. (2007) Számok, számolás, számolászavarok. Budapest: Pro Die Kiadó

  • Nagy J. (1973) Alapmûveleti számolási készségek. Standardizált készségmérõ tesztek 1. Acta Universitatis Szegediensis de Attila József Nominatae, Sectio Paedagogica, Series Specifica, Szeged.

    • Search Google Scholar
    • Export Citation
  • Nagy J. (2000) XXI. század és nevelés. Budapest, Osiris Kiadó

  • PISA (2006) 2006 Összefoglaló jelentés. 2007 Budapest, Oktatási Hivatal. https://www.oktatas.hu/pub_bin/dload/kozoktatas/nemzetkozi_meresek/pisa/pisa2006_jelentes.pdf

    • Search Google Scholar
    • Export Citation
  • Richardson, F. C., & Suinn, R. M. (1972) The mathematics anxiety rating scale: Psychometric data. Journal of Counseling Psychology, Vol. 19. No. 6. pp. 551554.

    • Search Google Scholar
    • Export Citation
  • Roberts, B. W., Kuncel, N. R., Shiner, R., Caspi, A., & Goldberg, L. R. (2007) The Power of Personality: The Comparative Validity of Personality Traits, Socioeconomic Status, and Cognitive Ability for Predicting Important Life Outcomes. Perspectives on Psychological Science, Vol. 2. No. 4. pp. 313345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiefele, U., & Csikszentmihalyi, M. (1995) Motivation and ability as factors in mathematics experience and achievement. Journal for Research in Mathematics Education, Vol. 26. No. 2. pp. 163181.

    • Search Google Scholar
    • Export Citation
  • Schiefele, U., Krapp, A., & Winteler, A. (1992) Interest as a predictor of academic achievement: A meta-analysis of research. In: K. A. Renninger, S Hidi, & A. Krapp (eds). The role of interest in learning and development. Hillsdale, NJ: Erlbaum, pp. 183211.

    • Search Google Scholar
    • Export Citation
  • Shah, P., & Hoeffner, J. (2002) Review of graph comprehension research: Implications for instruction. Educational Psychology Review, Vol. 14. pp. 4769.

    • Search Google Scholar
    • Export Citation
  • Shaughnessy, J. M. (2007) Research on statistics learning and reasoning. Second handbook of research on mathematics teaching and learning, 957–1009.

    • Search Google Scholar
    • Export Citation
  • Singh, K., Granville, M., & Dika, S. (2002) Mathematics and science achievement: Effects of motivation, interest, and academic engagement. The Journal of Educational Research, Vol. 95. No. 6. pp. 323332.

    • Search Google Scholar
    • Export Citation
  • Skovsmose, O. (1994) Towards philosophy of critical mathematics education. Dordrecht: Kluwer Academic Publishers.

  • Spencer L. M., & Spencer S. M. (1993) Competence at work: models for superior performance. Wiley

  • Tversky, A., & Kahneman, D. (1991) A döntések megfogalmazása és a választás pszichológiája. In: Pápai Z., Nagy P. (szerk.). Döntéselméleti szöveggyűjtemény. Budapest, Aula Kiadó

    • Search Google Scholar
    • Export Citation
  • Viljaranta, J., Lerkkanen, M. K., Poikkeus, A. M., Aunola, K., & Nurmi, J. E. (2009) Cross-lagged relations between task motivation and performance in arithmetic and literacy in kindergarten. Learning and Instruction, Vol. 19. No. 4. pp. 335344.

    • Search Google Scholar
    • Export Citation
  • Watson, J. M. (1997) Assessing statistical thinking using the media. In: I. Gal, & J. Garfield (eds). The assessment challenge in statistics education. IOS Press, pp. 107121.

    • Search Google Scholar
    • Export Citation
  • Watson, J. M., & Moritz, J. (1999) The beginning of statistical inference: Comparing two data sets. Educational Studies in Mathematics, Vol. 37. pp. 145168.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor-in-Chief:

Founding Editor-in-Chief:

  • Tamás NÉMETH

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (University of Pannonia)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)
  • Gergely DELI (University of Public Service)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • József HALLER (University of Public Service)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • János JÓZSA (Budapest University of Technology and Economics)
  • András KOLTAY (National Media and Infocommunications Authority)
  • Gábor KOVÁCS (University of Public Service)
  • Levente KOVÁCS buda University)
  • Melinda KOVÁCS (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós MARÓTH (Avicenna Institue of Middle Eastern Studies )
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • József PALLO (University of Public Service)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906
E-mail: scietsec@bm.gov.hu

DOAJ

2023  
CrossRef Documents 32
CrossRef Cites 15
Days from submission to acceptance 59
Days from acceptance to publication 104
Acceptance Rate 81%

2022  
CrossRef Documents 38
CrossRef Cites 10
Days from submission to acceptance 54
Days from acceptance to publication 78
Acceptance Rate 84%

2021  
CrossRef Documents 46
CrossRef Cites 0
Days from submission to acceptance 33
Days from acceptance to publication 85
Acceptance Rate 93%

2020  
CrossRef Documents 13
CrossRef Cites 0
Days from submission to acceptance 30
Days from acceptance to publication 62
Acceptance Rate 93%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
English
Size A4
Year of
Foundation
2020
Volumes
per Year
1
Issues
per Year
4
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
Founder's
Address
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
Applied
Licenses
CC-BY 4.0
CC-BY-NC 4.0
ISSN 3057-9759 (print)
ISSN 2732-2688 (online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2024 0 14762 40
Dec 2024 0 730 9
Jan 2025 0 860 7
Feb 2025 0 410 4
Mar 2025 0 530 3
Apr 2025 0 126 5
May 2025 0 0 0