Authors:
Balázs Váradi Debreceni Egyetem, Természettudományi és Technológiai Kar, Kémiai Intézet, Fizikai Kémiai Tanszék, Debrecen, Magyarország
Debreceni Egyetem, Doktori Tanácsok és Iskolák, Természettudományi és Informatikai Doktori Tanács, Kémiai Tudományok Doktori Iskola, Debrecen, Magyarország
Atommagkutató Intézet, Debrecen, Magyarország

Search for other papers by Balázs Váradi in
Current site
Google Scholar
PubMed
Close
,
Gergő Zoltán Sajtos Debreceni Egyetem, Természettudományi és Technológiai Kar, Kémiai Intézet, Fizikai Kémiai Tanszék, Debrecen, Magyarország
Debreceni Egyetem, Doktori Tanácsok és Iskolák, Természettudományi és Informatikai Doktori Tanács, Kémiai Tudományok Doktori Iskola, Debrecen, Magyarország

Search for other papers by Gergő Zoltán Sajtos in
Current site
Google Scholar
PubMed
Close
,
Károly Brezovcsik Atommagkutató Intézet, Debrecen, Magyarország

Search for other papers by Károly Brezovcsik in
Current site
Google Scholar
PubMed
Close
,
Zoltán Szűcs Atommagkutató Intézet, Debrecen, Magyarország

Search for other papers by Zoltán Szűcs in
Current site
Google Scholar
PubMed
Close
,
Stefan Szedlacsek Román Akadémia, Biokémiai Intézet, Bukarest, Románia

Search for other papers by Stefan Szedlacsek in
Current site
Google Scholar
PubMed
Close
,
Gábor Nagy ScanoMed Kft., Debrecen, Magyarország

Search for other papers by Gábor Nagy in
Current site
Google Scholar
PubMed
Close
, and
Gyula Tircsó Debreceni Egyetem, Természettudományi és Technológiai Kar, Kémiai Intézet, Fizikai Kémiai Tanszék, Debrecen, Magyarország

Search for other papers by Gyula Tircsó in
Current site
Google Scholar
PubMed
Close
Open access

A célzott molekuláris képalkotás egy új, ígéretes módszer a nukleáris medicinában a diagnosztika és a terápia területén. A mangánizotópok sokszínűsége elérhető közelségbe hozta a bimodális képalkotásokat, mivel az 52Mn pozitront emittáló izotóp a funkcionális PET, míg a paramágneses 55Mn-izotóp kelátjai az MR kontrasztanyag-kutatások és a PET-diagnosztikumok kapcsolását tették lehetővé. Jelen közleményben kitérünk a Mn(II)-ion komplexálására leginkább alkalmas kelátorok, illetve az ezekből származtatható kétfunkciós és intelligens Mn(II)-komplexek, valamint a lehetséges biológiai vektormolekulák bemutatására. Ezekre az előzményekre alapozva példákat mutatunk be az in vivo kísérletek során jól teljesítő vektormolekulák és az általunk kifejlesztett kelátorok 52Mn-izotóppal jelölt konjugátumainak alkalmazására.

Early diagnosis of oncological diseases is crucial for cancer treatment and survival. Imaging of cancerous tissues rely on the availability of targeting biovector molecules capable of carrying diagnostic medical radionuclides, contrast agents (CAs) or optical probes to the diseased tissue for imaging. The production of tissue-specific contrast agents or contrast agents targeted with appropriate vector molecules was fueled by their ability to accumulate in certain tissues or organs, which allows us to reduce the required dose or to visualize specific processes at the cellular/tissue level. Recent developments in antibody engineering and PET (positron emission tomography) radiochemistry have led to new ImmunoPET imaging approaches. In contrast to the antibodies, antibody fragments such as minibodies, dia-bodies, single-chain variable region fragments (scFvs), nanobodies and affibodies are smaller in size, yet retain the specificity and affinity of antibodies in addition to more desirable pharmacokinetic profiles. For such imaging studies isotopes with long half-lives are required (64Cu or 89Zr were the ones used more frequently), which brought an attention on the positron emitter 52Mn isotope (t1/2=5.59 days). On the other hand Mn(II) complexes have been intensively studied recently as monoaquated chelates of Mn(II) are considered safer alternatives to Gd(III)-based contrast agents (GBCA’s) in magnetic resonance imaging (MRI). Therefore the use of Mn(II) complexes also offers the possibility of “marrying” these two diagnostic modalities. In MRI new, safer alternatives are needed, since Nephrogenic Systemic Fibrosis (NSF) in renal patients has been linked to the toxic effect of Gd(III) ion released during dissociation of the applied CA (Gd(III) complexes). Ten years later, it was also confirmed that injected Gd(III) can accumulate in patients with healthy kidney function, while Gd(III) chelates excreted from the body increase Gd(III) concentrations in surface water (“gadolinium anomaly”). Related to this research topic, our current paper summarizes the most suitable chelators designed for complexation of Mn(II) ions. Bifunctional ligands developed for Mn(II) complexation and intelligent/responsive Mn(II)-based probes were also reviewed, furthermore, information on the possible biological vector molecules was also summarized. Based on this information we present examples of the application of vector molecules that have performed outstandingly in in vivo experiments and their 52Mn isotopically labeled conjugates that we have developed and tested using animal models.

  • Botár, R., Molnár, E., Garda, Z., Madarasi, E., Trencsényi, G., Kiss, J.Tircsó, G. (2022) Synthesis and characterization of a stable and inert MnII-based ZnII responsive MRI probe for molecular imaging of glucose stimulated zinc secretion (GSZS). Inorganic Chemistry Frontiers, Vol. 9. pp. 577583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Botár, R., Molnár, E., Trencsényi, G., Kiss, J., Kálmán, F. K. & Tircsó, G. (2020) Stable and Inert Mn(II)-Based and pH-Responsive Contrast Agents. Journal of the American Chemical Society, Vol. 142. pp. 16621666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandt, M., Cardinale, J., Rausch, I. & Mindt, T. L. (2019) Manganese in PET imaging: Opportunities and challenges. Journal of Labelled Compounds and Radiopharmaceuticals, Vol. 62. pp. 541551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchholz, M., Spahn, I., Scholten, B. & Coenen, H. H. (2013) Cross-section measurements for the formation of manganese-52 and its isolation with a non-hazardous eluent. Radiochimica Acta, Vol. 101. pp. 491499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burley, T. A., Da Pieve, C., Martins, C. D., Ciobota, D. M., Allott, L., Oyen, W. J. G.Kramer-Marek, G. (2019) Affibody-Based PET Imaging to Guide EGFR-Targeted Cancer Therapy in Head and Neck Squamous Cell Cancer Models. Journal of Nuclear Medicine, Vol. 60. p. 353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, K., Cai, Z., Cao, Y., Jiang, L., Jiang, Y., Gu, H.Ai, H. (2023) Kinetically inert manganese (II)-based hybrid micellar complexes for magnetic resonance imaging of lymph node metastasis. Regenerative Biomaterials, Vol. 10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chirayil, S., Jordan, V. C., Martins, A. F., Paranawithana, N., Ratnakar, S. J. & Sherry, A. D. (2021) Manganese(II)-Based Responsive Contrast Agent Detects Glucose-Stimulated Zinc Secretion from the Mouse Pancreas and Prostate by MRI. Inorganic Chemistry, Vol. 60. pp. 21682177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conti, M. & Eriksson, L. (2016) Physics of pure and non-pure positron emitters for PET: A review and a discussion. EJNMMI Physics, Vol. 3. No. 8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csupász, T., Szücs, D., Kálmán, F., Holloczki, O., Fekete, A., Szikra, D.Tircso, G. (2022) A New Oxygen Containing Pyclen-Type Ligand as a Manganese(II) Binder for MRI and 52Mn PET Applications: Equilibrium, Kinetic, Relaxometric, Structural and Radiochemical Studies. Molecules, Vol. 27. No. 2. p. 371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Nardo, L., Ferro-Flores, G., Bolzati, C., Esposito, J. & Meléndez-Alafort, L. (2019) Radiation effective dose assessment of [51Mn]-and [52Mn]-chloride. Applied Radiation and Isotopes, Vol. 153, 108805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dey, K. (2023) Monoclonal Antibody Therapy Market Overview. MRFR. https://www.marketresearchfuture.com/reports/monoclonal-antibody-therapy-market-2089 [Letöltve: 2023. 12. 15.]

    • Search Google Scholar
    • Export Citation
  • Drahoš, B., Kotek, J., Hermann, P., Lukeš, I. & Tóth, É. (2010) Mn2+ Complexes with Pyridine-Containing 15-Membered Macrocycles: Thermodynamic, Kinetic, Crystallographic, and 1H/17O Relaxation Studies. Inorganic Chemistry, Vol. 49. pp. 32243238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fonslet, J., Tietze, S., Jensen, A. I., Graves, S. A. & Severin, G. W. (2017) Optimized procedures for manganese-52: Production, separation and radiolabeling. Applied Radiation and Isotopes, Vol. 121. pp. 3843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forgács, A., Regueiro-Figueroa, M., Barriada, J. L., Esteban-Gómez, D., De Blas, A., Rodríguez-Blas, T.Platas-Iglesias, C. (2015) Mono-, Bi-, and Trinuclear Bis-Hydrated Mn2+ Complexes as Potential MRI Contrast Agents. Inorganic Chemistry, Vol. 54. pp. 95769587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forgács, A., Tei, L., Baranyai, Z., Tóth, I., Zékány, L. & Botta, M. (2016) A Bisamide Derivative of [Mn(1,4-DO2A)]–Solution Thermodynamic, Kinetic, and NMR Relaxometric Studies. European Journal of Inorganic Chemistry, Vol. 2016. pp. 11651174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forgács, A., Pujales-Paradela, R., Regueiro-Figueroa, M., Valencia, L., Esteban-Gómez, D., Botta, M. & Platas-Iglesias, C. (2017a) Developing the family of picolinate ligands for Mn2+ complexation. Dalton Transactions, Vol. 46. pp. 15461558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forgács, A., Tei, L., Baranyai, Z., Esteban-Gómez, D., Platas-Iglesias, C. & Botta, M. (2017b) Optimising the relaxivities of Mn2+ complexes by targeting human serum albumin (HSA). Dalton Transactions, Vol. 46. pp. 84948504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frejd, F. Y. & Kim, K.-T. (2017) Affibody molecules as engineered protein drugs. Experimental & Molecular Medicine, Vol. 49, e306.

  • Fu, R., Carroll, L., Yahioglu, G., Aboagye, E. O. & Miller, P. W. (2018) Antibody Fragment and Affibody ImmunoPET Imaging Agents: Radiolabelling Strategies and Applications. ChemMedChem, Vol. 13. pp. 24662478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gale, E. M., Atanasova, I. P., Blasi, F., Ay, I. & Caravan, P. (2015) A Manganese Alternative to Gadolinium for MRI Contrast. Journal of the American Chemical Society, Vol. 137. pp. 1554815557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gale, E. M., Mukherjee, S., Liu, C., Loving, G. S. & Caravan, P. (2014) Structure–Redox–Relaxivity Relationships for Redox Responsive Manganese-Based Magnetic Resonance Imaging Probes. Inorganic Chemistry, Vol. 53. pp. 1074810761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gale, E. M., Wey, H.-Y., Ramsay, I., Yen, Y.-F., Sosnovik, D. E. & Caravan, P. (2018) A Manganese-based Alternative to Gadolinium: Contrast-enhanced MR Angiography, Excretion, Pharmacokinetics, and Metabolism. Radiology, Vol. 286. pp. 865872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garda, Z., Forgács, A., Do, Q. N., Kálmán, F. K., Timári, S., Baranyai, Z.Tircsó, G. (2016) Physico-chemical properties of MnII complexes formed with cis-and trans-DO2A: Thermodynamic, electrochemical and kinetic studies. Journal of Inorganic Biochemistry, Vol. 163. pp. 206213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garda, Z., Molnár, E., Hamon, N., Barriada, J. L., Esteban-Gómez, D., Váradi, B.Tircsó, G. (2021) Complexation of Mn(II) by Rigid Pyclen Diacetates: Equilibrium, Kinetic, Relaxometric, Density Functional Theory, and Superoxide Dismutase Activity Studies. Inorganic Chemistry, Vol. 60. pp. 11331148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graves, S. A., Hernandez, R., Fonslet, J., England, C. G., Valdovinos, H. F., Ellison, P. A.Severin, G. W. (2015) Novel Preparation Methods of 52Mn for ImmunoPET Imaging. Bioconjugate Chemistry, Vol. 26. pp. 21182124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, R. C., Qin, J., Laney, V., Ayat, N. & Lu, Z.-R. (2022) Manganese(II) EOB-Pyclen Diacetate for Liver-Specific MRI. ACS Applied Bio Materials, Vol. 5. pp. 451458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., Chen, Y., Zhao, Y., Zhao, X., Zhang, J., Wang, J. & Zhang, Z. (2022) Pre-Clinical Study of the [18F]AlF-Labeled HER2 Affibody for Non-Invasive HER2 Detection in Gastric Cancer. Frontiers in Medicine, Vol. 9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kálmán, F. K. & Tircsó, G. (2012) Kinetic Inertness of the Mn2+ Complexes Formed with AAZTA and Some Open-Chain EDTA Derivatives. Inorganic Chemistry, Vol. 51. pp. 1006510067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kálmán, F. K., Nagy, V., Váradi, B., Garda, Z., Molnár, E., Trencsényi, G.Tircsó, G. (2020) Mn(II)-Based MRI Contrast Agent Candidate for Vascular Imaging. Journal of Medicinal Chemistry, Vol. 63. pp. 60576065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kálmán, F. K., Nagy, V., Uzal-Varela, R., Pérez-Lourido, P., Esteban-Gómez, D., Garda, Z.Tircsó, G. (2021) Expanding the Ligand Classes Used for Mn(II) Complexation: Oxa-aza Macrocycles Make the Difference. Molecules, Vol. 26. p. 1524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, D. J. (1998) Applications and engineering of monoclonal antibodies. CRC Press.

  • Kononova, O. N., Bryuzgina, G. L., Apchitaeva, O. V. & Kononov, Y. S. (2019) Ion exchange recovery of chromium (VI) and manganese (II) from aqueous solutions. Arabian Journal of Chemistry, Vol. 12. pp. 27132720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladabaum, U. & Minoshima, S. (2008) Positron Emission Tomography. Textbook of Gastroenterology.

  • Leone, L., Anemone, A., Carella, A., Botto, E., Longo, D. L. & Tei, L. (2022) A Neutral and Stable Macrocyclic Mn(II) Complex for MRI Tumor Visualization. ChemMedChem, Vol. 17, e202200508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, C. M., Graves, S. A., Hernandez, R., Valdovinos, H. F., Barnhart, T. E., Cai, W.Suzuki, M. (2015) 52Mn Production for PET/MRI Tracking of Human Stem Cells Expressing Divalent Metal Transporter 1 (DMT1). Theranostics, Vol. 5. pp. 227239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loving, G. S., Mukherjee, S. & Caravan, P. (2013) Redox-Activated Manganese-Based MR Contrast Agent. Journal of the American Chemical Society, Vol. 135. pp. 46204623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löfblom, J., Feldwisch, J., Tolmachev, V., Carlsson, J., Ståhl, S. & Frejd, F. Y. (2010) Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Letters, Vol. 584. pp. 26702680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkhede, D. D., Dhadke, P. M. & Khopkar, S. M. (1999) Solvent-Extraction Separation of Manganese(II) with Calixarene Substituted with an Acetyl Group at the Lower Rim. Analytical Sciences, Vol. 15. pp. 781784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallik, R., Saha, M., Singh, V., Mohan, H., Kumaran, S. S. & Mukherjee, C. (2023) Mn(II) complex impregnated porous silica nanoparticles as Zn(II)-responsive “Smart” MRI contrast agent for pancreas imaging. Journal of Materials Chemistry B, Vol. 11. pp. 82518261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, K. E., Liu, B., Marks, J. D., Tomlinson, J. S., Wu, H. & Wu, A. M. (2012) An Engineered Cysteine-Modified Diabody for Imaging Activated Leukocyte Cell Adhesion Molecule (ALCAM)-Positive Tumors. Molecular Imaging and Biology, Vol. 14. pp. 336347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michael, M., Yury, S. & Elisabeth, E. (2019) Gallium-68: Radiolabeling of Radiopharmaceuticals for PET Imaging – A Lot to Consider. In: Syed Ali Raza, N. & Muhammad Babar, I. (eds) Medical Isotopes. Rijeka, IntechOpen.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moreau, M., Raguin, O., Vrigneaud, J.-M., Collin, B., Bernhard, C., Tizon, X.Denat, F. (2012) DOTAGA-Trastuzumab. A New Antibody Conjugate Targeting HER2/Neu Antigen for Diagnostic Purposes. Bioconjugate Chemistry, Vol. 23. pp. 11811188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ndiaye, D., Cieslik, P., Wadepohl, H., Pallier, A., Même, S., Comba, P. & Tóth, É. (2022) Mn2+ Bispidine Complex Combining Exceptional Stability, Inertness, and MRI Efficiency. Journal of the American Chemical Society, Vol. 144. pp. 2221222220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ndiaye, D., Sy, M., Pallier, A., Même, S., De Silva, I., Lacerda, S.Tóth, É. (2020) Unprecedented Kinetic Inertness for a Mn2+- Bispidine Chelate: A Novel Structural Entry for Mn2+-Based Imaging Agents. Angewandte Chemie International Edition, Vol. 59. pp. 1195811963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ning, Y., Zhou, I. Y., Rotile, N. J., Pantazopoulos, P., Wang, H., Barrett, S. C.Caravan, P. (2022) Dual Hydrazine-Equipped Turn-On Manganese-Based Probes for Magnetic Resonance Imaging of Liver Fibrogenesis. Journal of the American Chemical Society, Vol. 144. pp. 1655316558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oroujeni, M., Garousi, J., Andersson, K. G., Löfblom, J., Mitran, B., Orlova, A. & Tolmachev, V. (2018) Preclinical Evaluation of [68Ga]Ga-DFO-ZEGFR:2377: A Promising Affibody-Based Probe for Noninvasive PET Imaging of EGFR Expression in Tumors. Cells, Vol. 7. No. 9. p. 141. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pota, K., Garda, Z., Kálmán, F. K., Barriada, J. L., Esteban-Gómez, D., Platas-Iglesias, C. … Tircsó, G. (2018) Taking the next step toward inert Mn2+ complexes of open-chain ligands: The case of the rigid PhDTA ligand. New Journal of Chemistry, Vol. 42. pp. 80018011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Regueiro-Figueroa, M., Lima, L. M. P., Blanco, V., Esteban-Gómez, D., De Blas, A., Rodríguez-Blas, T. … Platas-Iglesias, C. (2014a) Reasons behind the Relative Abundances of Heptacoordinate Complexes along the Late First-Row Transition Metal Series. Inorganic Chemistry, Vol. 53. pp. 1285912869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Regueiro-Figueroa, M., Rolla, G. A., Esteban-Gómez, D., De Blas, A., Rodríguez-Blas, T., Botta, M. & Platas-Iglesias, C. (2014b) High Relaxivity Mn2+-Based MRI Contrast Agents. Chemistry–A European Journal, Vol. 20. pp. 1730017305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichert, J. M. (2022) Antibody therapeutics approved or in regulatory review in the EU or US. The Antibody Society. https://www.antibodysociety.org/resources/approved-antibodies [Letöltve: 2023. 12. 01.]

    • Search Google Scholar
    • Export Citation
  • Rolla, G. A., De Biasio, V., Giovenzana, G. B., Botta, M. & Tei, L. (2018) Supramolecular assemblies based on amphiphilic Mn2+-complexes as high relaxivity MRI probes. Dalton Transactions, Vol. 47. pp. 1066010670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rolla, G. A., Platas-Iglesias, C., Botta, M., Tei, L. & Helm, L. (2013) 1H and 17O NMR Relaxometric and Computational Study on Macrocyclic Mn(II) Complexes. Inorganic Chemistry, Vol. 52. pp. 32683279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saerens, D. & Muyldermans, S. (2012) Single domain antibodies: Methods and protocols. Springer.

  • Sathiyajith, C., Hallett, A. J. & Edwards, P. G. (2022) Synthesis, photophysical characterization, relaxometric studies and molecular docking studies of gadolinium-free contrast agents for dual modal imaging. Results in Chemistry, Vol. 4, 100307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., Pan, Y. & Liang, G. (2023) Development of Macrocyclic Mn(II)-Bispyridine Complexes as pH-Responsive Magnetic Resonance Imaging Contrast Agents. European Journal of Inorganic Chemistry, Vol. 26, e202200786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sy, M., Ndiaye, D., Da Silva, I., Lacerda, S., Charbonnière, L. J., Tóth, É. & Nonat, A. M. (2022) 55/52Mn2+ Complexes with a Bispidine-Phosphonate Ligand: High Kinetic Inertness for Imaging Applications. Inorganic Chemistry, Vol. 61. pp. 1342113432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toàn, N. M., Vágner, A., Nagy, G., Országh, G., Nagy, T., Váradi, B. … Garai, I. (2024) [52Mn]Mn-BPPA-trastuzumab: A promising HER2-specific PET radiotracer. Journal of Medicinal Chemistry, Vol. 67. No. 10. pp. 82618270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Topping, G. J., Schaffer, P., Hoehr, C., Ruth, T. J. & Sossi, V. (2013) Manganese-52 positron emission tomography tracer characterization and initial results in phantoms and in vivo. Medical Physics, Vol. 40, 042502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troughton, J. S., Greenfield, M. T., Greenwood, J. M., Dumas, S., Wiethoff, A. J., Wang, J. … Caravan, P. (2004) Synthesis and Evaluation of a High Relaxivity Manganese(II)-Based MRI Contrast Agent. Inorganic Chemistry, Vol. 43. pp. 63136323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uzal-Varela, R., Rodríguez-Rodríguez, A., Martínez-Calvo, M., Carniato, F., Lalli, D., Esteban-Gómez, D. … Platas-Iglesias, C. (2020) Mn2+ Complexes Containing Sulfonamide Groups with pH-Responsive Relaxivity. Inorganic Chemistry, Vol. 59. pp. 1430614317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanasschen, C., Molnár, E., Tircsó, G., Kálmán, F. K., Tóth, É., Brandt, M. … Neumaier, B. (2017) Novel CDTA-based, Bifunctional Chelators for Stable and Inert MnII Complexation: Synthesis and Physicochemical Characterization. Inorganic Chemistry, Vol. 56. pp. 77467760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Váradi, B., Brezovcsik, K., Garda, Z., Madarasi, E., Szedlacsek, H., Badea, R.-A. … Tircsó, G. (2023) Synthesis and characterization of a novel [52Mn]Mn-labelled affibody based radiotracer for HER2+ targeting. Inorganic Chemistry Frontiers, Vol. 10. pp. 47344745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S., Ishioka, N. S., Osa, A., Koizumi, M., Sekine, T., Kiyomiya, S. … Mori, S. (2001) Production of positron emitters of metallic elements to study plant uptake and distribution. Radiochimica Acta, Vol. 89. pp. 853860. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisser, N. E. & Hall, J. C. (2009) Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnology Advances, Vol. 27. pp. 502520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C., Li, D., Yang, L., Lin, B., Zhang, H., Xu, Y. … Ai, H. (2015) Multivalent manganese complex decorated amphiphilic dextran micelles as sensitive MRI probes. Journal of Materials Chemistry B, Vol. 3. pp. 14701473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., Gale, E. M., Atanasova, I., Rietz, T. A. & Caravan, P. (2014) Hexameric MnII Dendrimer as MRI Contrast Agent. Chemistry–A European Journal, Vol. 20. pp. 1450714513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor-in-Chief:

Founding Editor-in-Chief:

  • Tamás NÉMETH

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (University of Pannonia)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)
  • Gergely DELI (University of Public Service)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • József HALLER (University of Public Service)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • János JÓZSA (Budapest University of Technology and Economics)
  • András KOLTAY (National Media and Infocommunications Authority)
  • Gábor KOVÁCS (University of Public Service)
  • Levente KOVÁCS buda University)
  • Melinda KOVÁCS (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós MARÓTH (Avicenna Institue of Middle Eastern Studies )
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • József PALLO (University of Public Service)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906
E-mail: scietsec@bm.gov.hu

DOAJ

2023  
CrossRef Documents 32
CrossRef Cites 15
Days from submission to acceptance 59
Days from acceptance to publication 104
Acceptance Rate 81%

2022  
CrossRef Documents 38
CrossRef Cites 10
Days from submission to acceptance 54
Days from acceptance to publication 78
Acceptance Rate 84%

2021  
CrossRef Documents 46
CrossRef Cites 0
Days from submission to acceptance 33
Days from acceptance to publication 85
Acceptance Rate 93%

2020  
CrossRef Documents 13
CrossRef Cites 0
Days from submission to acceptance 30
Days from acceptance to publication 62
Acceptance Rate 93%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
English
Size A4
Year of
Foundation
2020
Volumes
per Year
1
Issues
per Year
4
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
Founder's
Address
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
Applied
Licenses
CC-BY 4.0
CC-BY-NC 4.0
ISSN 3057-9759 (print)
ISSN 2732-2688 (online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2024 0 123 39
Jan 2025 0 221 24
Feb 2025 0 172 9
Mar 2025 0 223 21
Apr 2025 0 85 20
May 2025 0 24 21
Jun 2025 0 0 0