A célzott molekuláris képalkotás egy új, ígéretes módszer a nukleáris medicinában a diagnosztika és a terápia területén. A mangánizotópok sokszínűsége elérhető közelségbe hozta a bimodális képalkotásokat, mivel az 52Mn pozitront emittáló izotóp a funkcionális PET, míg a paramágneses 55Mn-izotóp kelátjai az MR kontrasztanyag-kutatások és a PET-diagnosztikumok kapcsolását tették lehetővé. Jelen közleményben kitérünk a Mn(II)-ion komplexálására leginkább alkalmas kelátorok, illetve az ezekből származtatható kétfunkciós és intelligens Mn(II)-komplexek, valamint a lehetséges biológiai vektormolekulák bemutatására. Ezekre az előzményekre alapozva példákat mutatunk be az in vivo kísérletek során jól teljesítő vektormolekulák és az általunk kifejlesztett kelátorok 52Mn-izotóppal jelölt konjugátumainak alkalmazására.
Early diagnosis of oncological diseases is crucial for cancer treatment and survival. Imaging of cancerous tissues rely on the availability of targeting biovector molecules capable of carrying diagnostic medical radionuclides, contrast agents (CAs) or optical probes to the diseased tissue for imaging. The production of tissue-specific contrast agents or contrast agents targeted with appropriate vector molecules was fueled by their ability to accumulate in certain tissues or organs, which allows us to reduce the required dose or to visualize specific processes at the cellular/tissue level. Recent developments in antibody engineering and PET (positron emission tomography) radiochemistry have led to new ImmunoPET imaging approaches. In contrast to the antibodies, antibody fragments such as minibodies, dia-bodies, single-chain variable region fragments (scFvs), nanobodies and affibodies are smaller in size, yet retain the specificity and affinity of antibodies in addition to more desirable pharmacokinetic profiles. For such imaging studies isotopes with long half-lives are required (64Cu or 89Zr were the ones used more frequently), which brought an attention on the positron emitter 52Mn isotope (t1/2=5.59 days). On the other hand Mn(II) complexes have been intensively studied recently as monoaquated chelates of Mn(II) are considered safer alternatives to Gd(III)-based contrast agents (GBCA’s) in magnetic resonance imaging (MRI). Therefore the use of Mn(II) complexes also offers the possibility of “marrying” these two diagnostic modalities. In MRI new, safer alternatives are needed, since Nephrogenic Systemic Fibrosis (NSF) in renal patients has been linked to the toxic effect of Gd(III) ion released during dissociation of the applied CA (Gd(III) complexes). Ten years later, it was also confirmed that injected Gd(III) can accumulate in patients with healthy kidney function, while Gd(III) chelates excreted from the body increase Gd(III) concentrations in surface water (“gadolinium anomaly”). Related to this research topic, our current paper summarizes the most suitable chelators designed for complexation of Mn(II) ions. Bifunctional ligands developed for Mn(II) complexation and intelligent/responsive Mn(II)-based probes were also reviewed, furthermore, information on the possible biological vector molecules was also summarized. Based on this information we present examples of the application of vector molecules that have performed outstandingly in in vivo experiments and their 52Mn isotopically labeled conjugates that we have developed and tested using animal models.
Botár, R., Molnár, E., Garda, Z., Madarasi, E., Trencsényi, G., Kiss, J. … Tircsó, G. (2022) Synthesis and characterization of a stable and inert MnII-based ZnII responsive MRI probe for molecular imaging of glucose stimulated zinc secretion (GSZS). Inorganic Chemistry Frontiers, Vol. 9. pp. 577–583.
Botár, R., Molnár, E., Trencsényi, G., Kiss, J., Kálmán, F. K. & Tircsó, G. (2020) Stable and Inert Mn(II)-Based and pH-Responsive Contrast Agents. Journal of the American Chemical Society, Vol. 142. pp. 1662–1666.
Brandt, M., Cardinale, J., Rausch, I. & Mindt, T. L. (2019) Manganese in PET imaging: Opportunities and challenges. Journal of Labelled Compounds and Radiopharmaceuticals, Vol. 62. pp. 541–551.
Buchholz, M., Spahn, I., Scholten, B. & Coenen, H. H. (2013) Cross-section measurements for the formation of manganese-52 and its isolation with a non-hazardous eluent. Radiochimica Acta, Vol. 101. pp. 491–499.
Burley, T. A., Da Pieve, C., Martins, C. D., Ciobota, D. M., Allott, L., Oyen, W. J. G. … Kramer-Marek, G. (2019) Affibody-Based PET Imaging to Guide EGFR-Targeted Cancer Therapy in Head and Neck Squamous Cell Cancer Models. Journal of Nuclear Medicine, Vol. 60. p. 353.
Chen, K., Cai, Z., Cao, Y., Jiang, L., Jiang, Y., Gu, H. … Ai, H. (2023) Kinetically inert manganese (II)-based hybrid micellar complexes for magnetic resonance imaging of lymph node metastasis. Regenerative Biomaterials, Vol. 10.
Chirayil, S., Jordan, V. C., Martins, A. F., Paranawithana, N., Ratnakar, S. J. & Sherry, A. D. (2021) Manganese(II)-Based Responsive Contrast Agent Detects Glucose-Stimulated Zinc Secretion from the Mouse Pancreas and Prostate by MRI. Inorganic Chemistry, Vol. 60. pp. 2168–2177.
Conti, M. & Eriksson, L. (2016) Physics of pure and non-pure positron emitters for PET: A review and a discussion. EJNMMI Physics, Vol. 3. No. 8.
Csupász, T., Szücs, D., Kálmán, F., Holloczki, O., Fekete, A., Szikra, D. … Tircso, G. (2022) A New Oxygen Containing Pyclen-Type Ligand as a Manganese(II) Binder for MRI and 52Mn PET Applications: Equilibrium, Kinetic, Relaxometric, Structural and Radiochemical Studies. Molecules, Vol. 27. No. 2. p. 371.
De Nardo, L., Ferro-Flores, G., Bolzati, C., Esposito, J. & Meléndez-Alafort, L. (2019) Radiation effective dose assessment of [51Mn]-and [52Mn]-chloride. Applied Radiation and Isotopes, Vol. 153, 108805.
Dey, K. (2023) Monoclonal Antibody Therapy Market Overview. MRFR. https://www.marketresearchfuture.com/reports/monoclonal-antibody-therapy-market-2089 [Letöltve: 2023. 12. 15.]
Drahoš, B., Kotek, J., Hermann, P., Lukeš, I. & Tóth, É. (2010) Mn2+ Complexes with Pyridine-Containing 15-Membered Macrocycles: Thermodynamic, Kinetic, Crystallographic, and 1H/17O Relaxation Studies. Inorganic Chemistry, Vol. 49. pp. 3224–3238.
Fonslet, J., Tietze, S., Jensen, A. I., Graves, S. A. & Severin, G. W. (2017) Optimized procedures for manganese-52: Production, separation and radiolabeling. Applied Radiation and Isotopes, Vol. 121. pp. 38–43.
Forgács, A., Regueiro-Figueroa, M., Barriada, J. L., Esteban-Gómez, D., De Blas, A., Rodríguez-Blas, T. … Platas-Iglesias, C. (2015) Mono-, Bi-, and Trinuclear Bis-Hydrated Mn2+ Complexes as Potential MRI Contrast Agents. Inorganic Chemistry, Vol. 54. pp. 9576–9587.
Forgács, A., Tei, L., Baranyai, Z., Tóth, I., Zékány, L. & Botta, M. (2016) A Bisamide Derivative of [Mn(1,4-DO2A)]–Solution Thermodynamic, Kinetic, and NMR Relaxometric Studies. European Journal of Inorganic Chemistry, Vol. 2016. pp. 1165–1174.
Forgács, A., Pujales-Paradela, R., Regueiro-Figueroa, M., Valencia, L., Esteban-Gómez, D., Botta, M. & Platas-Iglesias, C. (2017a) Developing the family of picolinate ligands for Mn2+ complexation. Dalton Transactions, Vol. 46. pp. 1546–1558.
Forgács, A., Tei, L., Baranyai, Z., Esteban-Gómez, D., Platas-Iglesias, C. & Botta, M. (2017b) Optimising the relaxivities of Mn2+ complexes by targeting human serum albumin (HSA). Dalton Transactions, Vol. 46. pp. 8494–8504.
Frejd, F. Y. & Kim, K.-T. (2017) Affibody molecules as engineered protein drugs. Experimental & Molecular Medicine, Vol. 49, e306.
Fu, R., Carroll, L., Yahioglu, G., Aboagye, E. O. & Miller, P. W. (2018) Antibody Fragment and Affibody ImmunoPET Imaging Agents: Radiolabelling Strategies and Applications. ChemMedChem, Vol. 13. pp. 2466–2478.
Gale, E. M., Atanasova, I. P., Blasi, F., Ay, I. & Caravan, P. (2015) A Manganese Alternative to Gadolinium for MRI Contrast. Journal of the American Chemical Society, Vol. 137. pp. 15548–15557.
Gale, E. M., Mukherjee, S., Liu, C., Loving, G. S. & Caravan, P. (2014) Structure–Redox–Relaxivity Relationships for Redox Responsive Manganese-Based Magnetic Resonance Imaging Probes. Inorganic Chemistry, Vol. 53. pp. 10748–10761.
Gale, E. M., Wey, H.-Y., Ramsay, I., Yen, Y.-F., Sosnovik, D. E. & Caravan, P. (2018) A Manganese-based Alternative to Gadolinium: Contrast-enhanced MR Angiography, Excretion, Pharmacokinetics, and Metabolism. Radiology, Vol. 286. pp. 865–872.
Garda, Z., Forgács, A., Do, Q. N., Kálmán, F. K., Timári, S., Baranyai, Z. … Tircsó, G. (2016) Physico-chemical properties of MnII complexes formed with cis-and trans-DO2A: Thermodynamic, electrochemical and kinetic studies. Journal of Inorganic Biochemistry, Vol. 163. pp. 206–213.
Garda, Z., Molnár, E., Hamon, N., Barriada, J. L., Esteban-Gómez, D., Váradi, B. … Tircsó, G. (2021) Complexation of Mn(II) by Rigid Pyclen Diacetates: Equilibrium, Kinetic, Relaxometric, Density Functional Theory, and Superoxide Dismutase Activity Studies. Inorganic Chemistry, Vol. 60. pp. 1133–1148.
Graves, S. A., Hernandez, R., Fonslet, J., England, C. G., Valdovinos, H. F., Ellison, P. A. … Severin, G. W. (2015) Novel Preparation Methods of 52Mn for ImmunoPET Imaging. Bioconjugate Chemistry, Vol. 26. pp. 2118–2124.
Hall, R. C., Qin, J., Laney, V., Ayat, N. & Lu, Z.-R. (2022) Manganese(II) EOB-Pyclen Diacetate for Liver-Specific MRI. ACS Applied Bio Materials, Vol. 5. pp. 451–458.
Han, J., Chen, Y., Zhao, Y., Zhao, X., Zhang, J., Wang, J. & Zhang, Z. (2022) Pre-Clinical Study of the [18F]AlF-Labeled HER2 Affibody for Non-Invasive HER2 Detection in Gastric Cancer. Frontiers in Medicine, Vol. 9.
Kálmán, F. K. & Tircsó, G. (2012) Kinetic Inertness of the Mn2+ Complexes Formed with AAZTA and Some Open-Chain EDTA Derivatives. Inorganic Chemistry, Vol. 51. pp. 10065–10067.
Kálmán, F. K., Nagy, V., Váradi, B., Garda, Z., Molnár, E., Trencsényi, G. … Tircsó, G. (2020) Mn(II)-Based MRI Contrast Agent Candidate for Vascular Imaging. Journal of Medicinal Chemistry, Vol. 63. pp. 6057–6065.
Kálmán, F. K., Nagy, V., Uzal-Varela, R., Pérez-Lourido, P., Esteban-Gómez, D., Garda, Z. … Tircsó, G. (2021) Expanding the Ligand Classes Used for Mn(II) Complexation: Oxa-aza Macrocycles Make the Difference. Molecules, Vol. 26. p. 1524.
King, D. J. (1998) Applications and engineering of monoclonal antibodies. CRC Press.
Kononova, O. N., Bryuzgina, G. L., Apchitaeva, O. V. & Kononov, Y. S. (2019) Ion exchange recovery of chromium (VI) and manganese (II) from aqueous solutions. Arabian Journal of Chemistry, Vol. 12. pp. 2713–2720.
Ladabaum, U. & Minoshima, S. (2008) Positron Emission Tomography. Textbook of Gastroenterology.
Leone, L., Anemone, A., Carella, A., Botto, E., Longo, D. L. & Tei, L. (2022) A Neutral and Stable Macrocyclic Mn(II) Complex for MRI Tumor Visualization. ChemMedChem, Vol. 17, e202200508.
Lewis, C. M., Graves, S. A., Hernandez, R., Valdovinos, H. F., Barnhart, T. E., Cai, W. … Suzuki, M. (2015) 52Mn Production for PET/MRI Tracking of Human Stem Cells Expressing Divalent Metal Transporter 1 (DMT1). Theranostics, Vol. 5. pp. 227–239.
Loving, G. S., Mukherjee, S. & Caravan, P. (2013) Redox-Activated Manganese-Based MR Contrast Agent. Journal of the American Chemical Society, Vol. 135. pp. 4620–4623.
Löfblom, J., Feldwisch, J., Tolmachev, V., Carlsson, J., Ståhl, S. & Frejd, F. Y. (2010) Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Letters, Vol. 584. pp. 2670–2680.
Malkhede, D. D., Dhadke, P. M. & Khopkar, S. M. (1999) Solvent-Extraction Separation of Manganese(II) with Calixarene Substituted with an Acetyl Group at the Lower Rim. Analytical Sciences, Vol. 15. pp. 781–784.
Mallik, R., Saha, M., Singh, V., Mohan, H., Kumaran, S. S. & Mukherjee, C. (2023) Mn(II) complex impregnated porous silica nanoparticles as Zn(II)-responsive “Smart” MRI contrast agent for pancreas imaging. Journal of Materials Chemistry B, Vol. 11. pp. 8251–8261.
McCabe, K. E., Liu, B., Marks, J. D., Tomlinson, J. S., Wu, H. & Wu, A. M. (2012) An Engineered Cysteine-Modified Diabody for Imaging Activated Leukocyte Cell Adhesion Molecule (ALCAM)-Positive Tumors. Molecular Imaging and Biology, Vol. 14. pp. 336–347.
Michael, M., Yury, S. & Elisabeth, E. (2019) Gallium-68: Radiolabeling of Radiopharmaceuticals for PET Imaging – A Lot to Consider. In: Syed Ali Raza, N. & Muhammad Babar, I. (eds) Medical Isotopes. Rijeka, IntechOpen.
Moreau, M., Raguin, O., Vrigneaud, J.-M., Collin, B., Bernhard, C., Tizon, X. … Denat, F. (2012) DOTAGA-Trastuzumab. A New Antibody Conjugate Targeting HER2/Neu Antigen for Diagnostic Purposes. Bioconjugate Chemistry, Vol. 23. pp. 1181–1188.
Ndiaye, D., Cieslik, P., Wadepohl, H., Pallier, A., Même, S., Comba, P. & Tóth, É. (2022) Mn2+ Bispidine Complex Combining Exceptional Stability, Inertness, and MRI Efficiency. Journal of the American Chemical Society, Vol. 144. pp. 22212–22220.
Ndiaye, D., Sy, M., Pallier, A., Même, S., De Silva, I., Lacerda, S. … Tóth, É. (2020) Unprecedented Kinetic Inertness for a Mn2+- Bispidine Chelate: A Novel Structural Entry for Mn2+-Based Imaging Agents. Angewandte Chemie International Edition, Vol. 59. pp. 11958–11963.
Ning, Y., Zhou, I. Y., Rotile, N. J., Pantazopoulos, P., Wang, H., Barrett, S. C. … Caravan, P. (2022) Dual Hydrazine-Equipped Turn-On Manganese-Based Probes for Magnetic Resonance Imaging of Liver Fibrogenesis. Journal of the American Chemical Society, Vol. 144. pp. 16553–16558.
Oroujeni, M., Garousi, J., Andersson, K. G., Löfblom, J., Mitran, B., Orlova, A. & Tolmachev, V. (2018) Preclinical Evaluation of [68Ga]Ga-DFO-ZEGFR:2377: A Promising Affibody-Based Probe for Noninvasive PET Imaging of EGFR Expression in Tumors. Cells, Vol. 7. No. 9. p. 141. doi:
Pota, K., Garda, Z., Kálmán, F. K., Barriada, J. L., Esteban-Gómez, D., Platas-Iglesias, C. … Tircsó, G. (2018) Taking the next step toward inert Mn2+ complexes of open-chain ligands: The case of the rigid PhDTA ligand. New Journal of Chemistry, Vol. 42. pp. 8001–8011.
Regueiro-Figueroa, M., Lima, L. M. P., Blanco, V., Esteban-Gómez, D., De Blas, A., Rodríguez-Blas, T. … Platas-Iglesias, C. (2014a) Reasons behind the Relative Abundances of Heptacoordinate Complexes along the Late First-Row Transition Metal Series. Inorganic Chemistry, Vol. 53. pp. 12859–12869.
Regueiro-Figueroa, M., Rolla, G. A., Esteban-Gómez, D., De Blas, A., Rodríguez-Blas, T., Botta, M. & Platas-Iglesias, C. (2014b) High Relaxivity Mn2+-Based MRI Contrast Agents. Chemistry–A European Journal, Vol. 20. pp. 17300–17305.
Reichert, J. M. (2022) Antibody therapeutics approved or in regulatory review in the EU or US. The Antibody Society. https://www.antibodysociety.org/resources/approved-antibodies [Letöltve: 2023. 12. 01.]
Rolla, G. A., De Biasio, V., Giovenzana, G. B., Botta, M. & Tei, L. (2018) Supramolecular assemblies based on amphiphilic Mn2+-complexes as high relaxivity MRI probes. Dalton Transactions, Vol. 47. pp. 10660–10670.
Rolla, G. A., Platas-Iglesias, C., Botta, M., Tei, L. & Helm, L. (2013) 1H and 17O NMR Relaxometric and Computational Study on Macrocyclic Mn(II) Complexes. Inorganic Chemistry, Vol. 52. pp. 3268–3279.
Saerens, D. & Muyldermans, S. (2012) Single domain antibodies: Methods and protocols. Springer.
Sathiyajith, C., Hallett, A. J. & Edwards, P. G. (2022) Synthesis, photophysical characterization, relaxometric studies and molecular docking studies of gadolinium-free contrast agents for dual modal imaging. Results in Chemistry, Vol. 4, 100307.
Shen, X., Pan, Y. & Liang, G. (2023) Development of Macrocyclic Mn(II)-Bispyridine Complexes as pH-Responsive Magnetic Resonance Imaging Contrast Agents. European Journal of Inorganic Chemistry, Vol. 26, e202200786.
Sy, M., Ndiaye, D., Da Silva, I., Lacerda, S., Charbonnière, L. J., Tóth, É. & Nonat, A. M. (2022) 55/52Mn2+ Complexes with a Bispidine-Phosphonate Ligand: High Kinetic Inertness for Imaging Applications. Inorganic Chemistry, Vol. 61. pp. 13421–13432.
Toàn, N. M., Vágner, A., Nagy, G., Országh, G., Nagy, T., Váradi, B. … Garai, I. (2024) [52Mn]Mn-BPPA-trastuzumab: A promising HER2-specific PET radiotracer. Journal of Medicinal Chemistry, Vol. 67. No. 10. pp. 8261–8270.
Topping, G. J., Schaffer, P., Hoehr, C., Ruth, T. J. & Sossi, V. (2013) Manganese-52 positron emission tomography tracer characterization and initial results in phantoms and in vivo. Medical Physics, Vol. 40, 042502.
Troughton, J. S., Greenfield, M. T., Greenwood, J. M., Dumas, S., Wiethoff, A. J., Wang, J. … Caravan, P. (2004) Synthesis and Evaluation of a High Relaxivity Manganese(II)-Based MRI Contrast Agent. Inorganic Chemistry, Vol. 43. pp. 6313–6323.
Uzal-Varela, R., Rodríguez-Rodríguez, A., Martínez-Calvo, M., Carniato, F., Lalli, D., Esteban-Gómez, D. … Platas-Iglesias, C. (2020) Mn2+ Complexes Containing Sulfonamide Groups with pH-Responsive Relaxivity. Inorganic Chemistry, Vol. 59. pp. 14306–14317.
Vanasschen, C., Molnár, E., Tircsó, G., Kálmán, F. K., Tóth, É., Brandt, M. … Neumaier, B. (2017) Novel CDTA-based, Bifunctional Chelators for Stable and Inert MnII Complexation: Synthesis and Physicochemical Characterization. Inorganic Chemistry, Vol. 56. pp. 7746–7760.
Váradi, B., Brezovcsik, K., Garda, Z., Madarasi, E., Szedlacsek, H., Badea, R.-A. … Tircsó, G. (2023) Synthesis and characterization of a novel [52Mn]Mn-labelled affibody based radiotracer for HER2+ targeting. Inorganic Chemistry Frontiers, Vol. 10. pp. 4734–4745.
Watanabe, S., Ishioka, N. S., Osa, A., Koizumi, M., Sekine, T., Kiyomiya, S. … Mori, S. (2001) Production of positron emitters of metallic elements to study plant uptake and distribution. Radiochimica Acta, Vol. 89. pp. 853–860. doi:
Weisser, N. E. & Hall, J. C. (2009) Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnology Advances, Vol. 27. pp. 502–520.
Wu, C., Li, D., Yang, L., Lin, B., Zhang, H., Xu, Y. … Ai, H. (2015) Multivalent manganese complex decorated amphiphilic dextran micelles as sensitive MRI probes. Journal of Materials Chemistry B, Vol. 3. pp. 1470–1473.
Zhu, J., Gale, E. M., Atanasova, I., Rietz, T. A. & Caravan, P. (2014) Hexameric MnII Dendrimer as MRI Contrast Agent. Chemistry–A European Journal, Vol. 20. pp. 14507–14513.