A cukorbetegség előfordulása világszerte növekszik, és egyre súlyosabb terhet ró az egyén mellett a társadalomra és az egészségügyi rendszerre. A mesterséges intelligencia gyors ütemben terjed az egészségügyben is, és új lehetőségeket kínál a diabétesz diagnosztikában és kezelésben, beleértve a betegek önmenedzselését. Munkám célja, hogy bemutassam a mesterséges intelligencia különféle alkalmazási lehetőségeit a diabetológiában, és konkrét példákkal szemléltessem annak gyakorlati jelentőségét és alkalmazhatóságát. A mesterséges intelligencia alkalmazások folyamatos fejlődése ígéretes támogatást nyújt a cukorbetegség kezelésének holisztikus és betegközpontú megközelítésében, elősegítve annak hatékonyabbá tételét.
Diabetes mellitus (DM) has become one of the fastest-growing global health issues of the 21st century. According to the International Diabetes Federation (IDF), by 2045, the number of patients in the 20–79 age group may reach as high as 783 million globally. The most common form is type 2 diabetes mellitus (T2DM), which accounts for 90% of cases and is characterized by insulin resistance, a reduced effectiveness of the hormone. The treatment of the disease includes lifestyle changes, proper diet, and pharmacological therapy. Type 1 diabetes mellitus (T1DM) is rarer and is an autoimmune condition that causes insulin deficiency, requiring continuous insulin replacement for survival. Diabetes can lead to serious complications such as cardiovascular diseases, blindness, kidney damage, and amputations, which represent significant social and economic burdens. Therefore, early diagnosis of the condition and the timely application of appropriate therapy are crucial. The management of the disease requires lifelong care and self-care, including regular blood glucose monitoring and adjustments to insulin doses based on the individual's circumstances.
The spread of artificial intelligence (AI) in healthcare is bringing significant changes to the management and care of diabetes. In this article, I present various applications of AI in diabetology, illustrating its practical significance and applicability through specific examples.
AI offers opportunities in identifying risk factors for the disease, early diagnosis, the development of personalized therapies, and the detection of complications. Machine learning and predictive models, by analyzing the patient's past and current health data, can help predict diabetes or its complications, assist in prevention, and optimize treatment decisions.AI has also become an essential tool in self-management. The use of Continuous Glucose Monitoring Systems (CGMS) not only enables the continuous monitoring of carbohydrate metabolism but also helps prevent acute complications through predictive alerts related to abnormal low and high blood glucose levels. The cloud-based storage system of CGMS allows healthcare professionals to easily access glucose data and statistical parameters that objectively describe the metabolism. Integration of CGMS with insulin pumps and insulin pens, along with the development of bolus calculators, has improved insulin dose accuracy and adaptation to different life situations.
AI supports healthcare staff in applying a holistic, patient-centered approach, enabling personalized, dynamically adjustable, and safe treatments that can improve therapeutic outcomes and clinical results.
Dewangan, A. K. & Pragati Agrawal. Classification of Diabetes Mellitus Using Machine Learning Techniques. International Journal of Engineering and Applied Sciences 2 (2015). pp. 257905.
Belügyminisztérium – Egészségügyi Államtitkárság, Egészségügyi Szakmai Kollégium Egészségügyi szakmai irányelv A diabetes mellitus kórismézéséről, a cukorbetegek antihyperglykaemiás kezeléséről és gondozásáról felnőttkorban 2023. augusztus 02. Egészségügyi Közlöny. https://kollegium.aeek.hu
Facts and Factors (2024) Digital Health Market Size, Share Global Analysis Report, 2024 – 2032. https://www.fnfresearch.com/digital-health-market-reportLetöltés ideje: 2024.11.03.
Hevesi J.I. A folyamatos szöveti glükózmonitorozó rendszer elérhe tősége Magyarországon. Belügyi Szemle, 2023;71(12). pp. 2207–2222. https://doi.org/10.38146/BSZ.2023.12.6
Hevesi J.I. A szénhidrát-anyagcsere állapot jellemzése a folyamatos szöveti glükózmonitorozó rendszer alkalmazása mellett. Belügyi Szemle, 2024;72(1). pp. 75–88. https://doi.org/10.38146/BSZ.2024.1.5
IDF (2021) Diabetes Atlas. 10th edition, Brussel. https://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdfLetöltés ideje: 2024. május 10.
Klimontov V.V., Berikov V.B. & Saik O.V. Artificial intelligence in diabetology. Diabetes mellitus. 2021; 24(2). pp. 156-166. https://doi.:10.14341/DM12665
Makino M., Yoshimoto R., Ono, M., Itoko, T., Katsuki, T., Koseki, … Suzuki, A. Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning. Sci Rep. 2019;9(1). pp. 11862. https://doi:10.1038/s41598-019-48263-5
Medtronic Smart MDI https://www.medtronic-diabetes.com/hu-HU/SmartMDILetöltés ideje: 2024. november 14.
Medtronic MiniMed™ 640G System https://www.medtronic-diabetes.com.au/sites/default/files/MTR0144_640G_Intro_Brochure_v4-LR%202.pdfLetöltés ideje: 2024. november 14.
Medtronic MiniMed™ 740G System https://www.medtronic-diabetes.com/en-IL/insulin-pump-therapy/minimed-740g-systemLetöltés ideje: 2024. november 14.
Medtronic MiniMed™ 780G rendszer https://www.medtronic-diabetes.com/hu-HU/inzulinpumpa/minimed-780g-rendszerLetöltés ideje: 2024. november 14.
Nomura A., Yamamoto S., Hayakawa Y., Taniguchi K., Higashitani T., Aono D. … Yoneda T. SAT-LB121 Development of a Machine-Learning Method for Predicting New Onset of Diabetes Mellitus: A Retrospective Analysis of 509,153 Annual Specific Health Checkup Records. J. Endocr. Soc. 2020;4. https://doi:10.1210/jendso/bvaa046.2194
Rodríguez-Rodríguez I., Chatzigiannakis I., Rodríguez J.V., Maranghi M., Gentili M. & Zamora-Izquierdo M.Á. Utility of Big Data in Predicting Short-Term Blood Glucose Levels in Type 1 Diabetes Mellitus Through Machine Learning Techniques. Sensors (Basel). 2019 Oct 16;19(20). pp. 4482 https://doi:10.3390/s19204482
Templer S. Closed-Loop Insulin Delivery Systems: Past, Present, and Future Directions. Front Endocrinol (Lausanne). 2022;13:919942. Published 2022 Jun 6. https://doi:10.3389/fendo.2022.919942
WHO (2016) Multimorbidity: Technical Series on Safer Primary Care ISBN 978-92-4-151165-0 https://iris.who.int/bitstream/handle/10665/252275/9789241511650-eng.pdf?sequence=1Letöltés ideje: 2024. november 10.
WHO (2019) Classification of diabetes mellitus ISBN 978-92-4-151570-2 https://iris.who.int/bitstream/handle/10665/325182/9789241515702-eng.pdf?sequence=1Letöltés ideje: 2024. november 03.
WHO (2019) Medication Safety in Polypharmacy WHO/UHC/SDS/2019.11 https://iris.who.int/bitstream/handle/10665/325454/WHO-UHC-SDS-2019.11-eng.pdf?sequence=1
Zhang L., Shang X., Sreedharan S., Yan X., Liu J., Keel S. He M. Predicting the Development of Type 2 Diabetes in a Large Australian Cohort Using Machine-Learning Techniques: Longitudinal Survey Study. JMIR Med. Inform. https://2020;8 doi: .
Zion Market Research (2023) Artificial Intelligence in Diabetes Management Market Size, Share, Growth Report 2032. https://www.zionmarketresearch.com/news/global-artificial-intelligence-in-diabetes-management-marketLetöltés ideje: 2024. május 10.