Author:
Judit Ildikó Hevesi Észak-Pesti Centrumkórház – Honvédkórház, Diabetológia Szakrendelés, Budapest, Magyarország
Nemzeti Közszolgálati Egyetem Doktori Iskola, Hadtudományi kar, Budapest, Magyarország

Search for other papers by Judit Ildikó Hevesi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6491-9273
Open access

A cukorbetegség előfordulása világszerte növekszik, és egyre súlyosabb terhet ró az egyén mellett a társadalomra és az egészségügyi rendszerre. A mesterséges intelligencia gyors ütemben terjed az egészségügyben is, és új lehetőségeket kínál a diabétesz diagnosztikában és kezelésben, beleértve a betegek önmenedzselését. Munkám célja, hogy bemutassam a mesterséges intelligencia különféle alkalmazási lehetőségeit a diabetológiában, és konkrét példákkal szemléltessem annak gyakorlati jelentőségét és alkalmazhatóságát. A mesterséges intelligencia alkalmazások folyamatos fejlődése ígéretes támogatást nyújt a cukorbetegség kezelésének holisztikus és betegközpontú megközelítésében, elősegítve annak hatékonyabbá tételét.

Diabetes mellitus (DM) has become one of the fastest-growing global health issues of the 21st century. According to the International Diabetes Federation (IDF), by 2045, the number of patients in the 20–79 age group may reach as high as 783 million globally. The most common form is type 2 diabetes mellitus (T2DM), which accounts for 90% of cases and is characterized by insulin resistance, a reduced effectiveness of the hormone. The treatment of the disease includes lifestyle changes, proper diet, and pharmacological therapy. Type 1 diabetes mellitus (T1DM) is rarer and is an autoimmune condition that causes insulin deficiency, requiring continuous insulin replacement for survival. Diabetes can lead to serious complications such as cardiovascular diseases, blindness, kidney damage, and amputations, which represent significant social and economic burdens. Therefore, early diagnosis of the condition and the timely application of appropriate therapy are crucial. The management of the disease requires lifelong care and self-care, including regular blood glucose monitoring and adjustments to insulin doses based on the individual's circumstances.

The spread of artificial intelligence (AI) in healthcare is bringing significant changes to the management and care of diabetes. In this article, I present various applications of AI in diabetology, illustrating its practical significance and applicability through specific examples.

AI offers opportunities in identifying risk factors for the disease, early diagnosis, the development of personalized therapies, and the detection of complications. Machine learning and predictive models, by analyzing the patient's past and current health data, can help predict diabetes or its complications, assist in prevention, and optimize treatment decisions.AI has also become an essential tool in self-management. The use of Continuous Glucose Monitoring Systems (CGMS) not only enables the continuous monitoring of carbohydrate metabolism but also helps prevent acute complications through predictive alerts related to abnormal low and high blood glucose levels. The cloud-based storage system of CGMS allows healthcare professionals to easily access glucose data and statistical parameters that objectively describe the metabolism. Integration of CGMS with insulin pumps and insulin pens, along with the development of bolus calculators, has improved insulin dose accuracy and adaptation to different life situations.

AI supports healthcare staff in applying a holistic, patient-centered approach, enabling personalized, dynamically adjustable, and safe treatments that can improve therapeutic outcomes and clinical results.

  • Dewangan, A. K. & Pragati Agrawal. Classification of Diabetes Mellitus Using Machine Learning Techniques. International Journal of Engineering and Applied Sciences 2 (2015). pp. 257905.

    • Search Google Scholar
    • Export Citation
  • Belügyminisztérium – Egészségügyi Államtitkárság, Egészségügyi Szakmai Kollégium Egészségügyi szakmai irányelv A diabetes mellitus kórismézéséről, a cukorbetegek antihyperglykaemiás kezeléséről és gondozásáról felnőttkorban 2023. augusztus 02. Egészségügyi Közlöny. https://kollegium.aeek.hu

    • Search Google Scholar
    • Export Citation
  • Facts and Factors (2024) Digital Health Market Size, Share Global Analysis Report, 20242032. https://www.fnfresearch.com/digital-health-market-reportLetöltés ideje: 2024.11.03.

    • Search Google Scholar
    • Export Citation
  • Hevesi J.I. A folyamatos szöveti glükózmonitorozó rendszer elérhe tősége Magyarországon. Belügyi Szemle, 2023;71(12). pp. 22072222. https://doi.org/10.38146/BSZ.2023.12.6

    • Search Google Scholar
    • Export Citation
  • Hevesi J.I. A szénhidrát-anyagcsere állapot jellemzése a folyamatos szöveti glükózmonitorozó rendszer alkalmazása mellett. Belügyi Szemle, 2024;72(1). pp. 7588. https://doi.org/10.38146/BSZ.2024.1.5

    • Search Google Scholar
    • Export Citation
  • IDF (2021) Diabetes Atlas. 10th edition, Brussel. https://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdfLetöltés ideje: 2024. május 10.

    • Search Google Scholar
    • Export Citation
  • Klimontov V.V., Berikov V.B. & Saik O.V. Artificial intelligence in diabetology. Diabetes mellitus. 2021; 24(2). pp. 156-166. https://doi.:10.14341/DM12665

    • Search Google Scholar
    • Export Citation
  • Makino M., Yoshimoto R., Ono, M., Itoko, T., Katsuki, T., Koseki, … Suzuki, A. Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning. Sci Rep. 2019;9(1). pp. 11862. https://doi:10.1038/s41598-019-48263-5

    • Search Google Scholar
    • Export Citation
  • Medtronic Smart MDI https://www.medtronic-diabetes.com/hu-HU/SmartMDILetöltés ideje: 2024. november 14.

  • Medtronic MiniMed™ 640G System https://www.medtronic-diabetes.com.au/sites/default/files/MTR0144_640G_Intro_Brochure_v4-LR%202.pdfLetöltés ideje: 2024. november 14.

    • Search Google Scholar
    • Export Citation
  • Medtronic MiniMed™ 740G System https://www.medtronic-diabetes.com/en-IL/insulin-pump-therapy/minimed-740g-systemLetöltés ideje: 2024. november 14.

    • Search Google Scholar
    • Export Citation
  • Medtronic MiniMed™ 780G rendszer https://www.medtronic-diabetes.com/hu-HU/inzulinpumpa/minimed-780g-rendszerLetöltés ideje: 2024. november 14.

    • Search Google Scholar
    • Export Citation
  • Nomura A., Yamamoto S., Hayakawa Y., Taniguchi K., Higashitani T., Aono D.Yoneda T. SAT-LB121 Development of a Machine-Learning Method for Predicting New Onset of Diabetes Mellitus: A Retrospective Analysis of 509,153 Annual Specific Health Checkup Records. J. Endocr. Soc. 2020;4. https://doi:10.1210/jendso/bvaa046.2194

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Rodríguez I., Chatzigiannakis I., Rodríguez J.V., Maranghi M., Gentili M. & Zamora-Izquierdo M.Á. Utility of Big Data in Predicting Short-Term Blood Glucose Levels in Type 1 Diabetes Mellitus Through Machine Learning Techniques. Sensors (Basel). 2019 Oct 16;19(20). pp. 4482 https://doi:10.3390/s19204482

    • Search Google Scholar
    • Export Citation
  • Templer S. Closed-Loop Insulin Delivery Systems: Past, Present, and Future Directions. Front Endocrinol (Lausanne). 2022;13:919942. Published 2022 Jun 6. https://doi:10.3389/fendo.2022.919942

    • Search Google Scholar
    • Export Citation
  • WHO (2016) Multimorbidity: Technical Series on Safer Primary Care ISBN 978-92-4-151165-0 https://iris.who.int/bitstream/handle/10665/252275/9789241511650-eng.pdf?sequence=1Letöltés ideje: 2024. november 10.

    • Search Google Scholar
    • Export Citation
  • WHO (2019) Classification of diabetes mellitus ISBN 978-92-4-151570-2 https://iris.who.int/bitstream/handle/10665/325182/9789241515702-eng.pdf?sequence=1Letöltés ideje: 2024. november 03.

    • Search Google Scholar
    • Export Citation
  • WHO (2019) Medication Safety in Polypharmacy WHO/UHC/SDS/2019.11 https://iris.who.int/bitstream/handle/10665/325454/WHO-UHC-SDS-2019.11-eng.pdf?sequence=1

    • Search Google Scholar
    • Export Citation
  • Zhang L., Shang X., Sreedharan S., Yan X., Liu J., Keel S. He M. Predicting the Development of Type 2 Diabetes in a Large Australian Cohort Using Machine-Learning Techniques: Longitudinal Survey Study. JMIR Med. Inform. https://2020;8 doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zion Market Research (2023) Artificial Intelligence in Diabetes Management Market Size, Share, Growth Report 2032. https://www.zionmarketresearch.com/news/global-artificial-intelligence-in-diabetes-management-marketLetöltés ideje: 2024. május 10.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor-in-Chief:

Founding Editor-in-Chief:

  • Tamás NÉMETH

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (University of Pannonia)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)
  • Gergely DELI (University of Public Service)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • József HALLER (University of Public Service)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • János JÓZSA (Budapest University of Technology and Economics)
  • András KOLTAY (National Media and Infocommunications Authority)
  • Gábor KOVÁCS (University of Public Service)
  • Levente KOVÁCS buda University)
  • Melinda KOVÁCS (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós MARÓTH (Avicenna Institue of Middle Eastern Studies )
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • József PALLO (University of Public Service)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906
E-mail: scietsec@bm.gov.hu

DOAJ

2023  
CrossRef Documents 32
CrossRef Cites 15
Days from submission to acceptance 59
Days from acceptance to publication 104
Acceptance Rate 81%

2022  
CrossRef Documents 38
CrossRef Cites 10
Days from submission to acceptance 54
Days from acceptance to publication 78
Acceptance Rate 84%

2021  
CrossRef Documents 46
CrossRef Cites 0
Days from submission to acceptance 33
Days from acceptance to publication 85
Acceptance Rate 93%

2020  
CrossRef Documents 13
CrossRef Cites 0
Days from submission to acceptance 30
Days from acceptance to publication 62
Acceptance Rate 93%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
English
Size A4
Year of
Foundation
2020
Volumes
per Year
1
Issues
per Year
4
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
Founder's
Address
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
Applied
Licenses
CC-BY 4.0
CC-BY-NC 4.0
ISSN ISSN 2732-2688 (online), 3057-9759 (print)
   

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jul 2024 0 0 0
Aug 2024 0 0 0
Sep 2024 0 0 0
Oct 2024 0 0 0
Nov 2024 0 0 0
Dec 2024 0 8076 27
Jan 2025 0 507 4