Author: Ł. Komsta 1
View More View Less
  • 1 Chair and Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
Restricted access

Summary

A general equation is presented for modeling retention, using the organic modifier content of the mobile phase. The equation is based on the Box-Cox transform of modifier concentration. Both the semilogarithmic relationship (Soczewiński-Wachtmeister equation) and logarithmic relationship (Snyder-Soczewiński equation) are special cases of the proposed equation. The equation can be fitted easily with free software and an additional coefficient can be interpreted as closeness to the previous models. Even with strong closeness to log-log dependence, the equation still enables extrapolation to zero modifier content. A case study on nine drug-like substances is also discussed, with comparison of 14 previously proposed retention equations found in the literature.

  • [1]. R. Kaliszan in P.R. Brown (ed.) Advances in Chromatography, Vol. 33, CRC Press, 1993, p. 152.

  • [2]. E. Forgács and T. Cserháti, Molecular Basis of Chromatographic Separation, CRC Press, 1997, p, 150.

  • [3]. R. Kaliszan 1997 Structure and Retention in Chromatography: A Chemometric Approach OPA Amsterdam 44.

  • [4]. E. Soczewiński 2002 J. Chromatogr. A 965 109.

  • [5]. C. Giaginis A. Tsantili-Kakoulidou 2008 J. Liq. Chromatogr. Related Technol. 31 79.

  • [6]. E. Soczewiński C.A. Wachtmeister 1962 J. Chromatogr. 7 31.

  • [7]. L.R. Snyder J.W. Dolan 1998 Adv. Chromatogr. 38 115.

  • [8]. E. Soczewiński 1969 Anal. Chem. 41 179.

  • [9]. A. Wang L.C. Tan P.W. Carr 1999 J. Chromatogr., A 848 21.

  • [10]. T. Bączek M. Markuszewski R. Kaliszan M.A. Van Straten H.A. Claessens 2000 J. High Resolut. Chromatogr. 23 667.

  • [11]. P.J. Schoenmakers H.A.H. Billiet R. Tijssen L. De Galan 1978 J. Chromatogr. 149 519.

  • [12]. J. Ko J.C. Ford 2001 J. Chromatogr. A 913 3.

  • [13]. P.J. Schoenmakers H.A.H. Billiet L. De Galan 1981 J. Chromatogr. 218 261.

  • [14]. P. Nikitas A. Pappa-Louisi P. Agrafiotou 2002 J. Chromatogr. A 946 33.

  • [15]. U.D. Neue C.H. Phoebe K. Tran Y.F. Cheng Z. Lu 2001 J. Chromatogr. A 925 49.

  • [16]. W. Zapała K. Kaczmarski T. Kowalska 2002 J. Chromatogr. Sci. 40 575.

  • [17]. I. Zenkevich 2009 J. Chemometr. 23 179.

  • [18]. K.H. Row 1998 J. Chromatogr. A 797 23.

  • [19]. M. McCann J.H. Purnell C.A. Wellington 1980 Faraday Soc. Symp. Ser. 15 82.

  • [20]. K. Kaczmarski W. Prus T. Kowalska 2000 J. Chromatogr. A 869 57.

  • [21]. W. Zapała 2003 J. Chromatogr. Sci. 41 289.

  • [22]. T. Kowalska 1990 Chromatographia 30 298.

  • [23]. W. Prus Y. Vander-Heyden P. Kuś D.L. Massart T. Kowalska 1997 Acta Chromatogr. 7 194.

  • [24]. P. Nikitas A. Pappa-Louisi 2009 J. Chromatogr. A 1216 1737.

  • [25]. M. Rosés X. Subirats E. Bosch 2009 J. Chromatogr. A 1216 1756.

  • [26]. G.E.P. Box D.R. Cox 1964 J. Royal Stat. Soc. 26 211.

  • [27]. T. Inglot A. Gumieniczek Komsta A. Kasińska 2008 Chromatographia 68 997.

  • [28]. R Development Core Team 2009 R: A language and environment for statistical computing R Foundation for Statistical Computing Vienna, Austria.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2020 0 2 0
Jun 2020 0 1 1
Jul 2020 2 0 0
Aug 2020 2 0 0
Sep 2020 0 0 0
Oct 2020 0 0 0
Nov 2020 0 0 0