Short glucan oligomers were found to be covalently linked to the peptidoglycan fragments liberated by partial lysozyme digestion of Mesorhizobium loti HAMBI 1148 murein and among some muropeptide mono and oligomers subsequently subjected to alkaline β-elimination. The mass spectra of the preparation before and after treatment with alkali contained deprotonated ions [M-H]− recorded at m/z 3107 and 2856 which represented muropeptide fragments with 2 or 3 glucose residues, respectively, at the reducing end. Because of the lack of a free reducing group, muramyl residues remained untouched during the β-elimination reaction in a manner comparable with muropeptide fragments protected by 1,6-anhydromuramic acid represented in the spectra by [M-H]− ions with masses of 2451 and 2762 m/z. The ion [M-H]− at m/z 1615 which was proposed to represent a disaccharide fragment with one Glc residue linked had no counterpart in the spectra of lysozyme-liberated muropeptides and was supposed to have arisen from a dimer (ions [M + H]+ 2023 m/z and [M-H]− 2021 m/z observed for muropeptides not treated with alkali) after elimination of a GlcNAc-acetamidohexenopyranose fragment in the alkaline environment. According to a similar mechanism, the ion at m/z 2723 [M-H]− determined as a hexasaccharide fragment with an anhydromuramic acid residue at the end arose from a dimer represented by ion [M-H]− with mass 3128 m/z. The data presented suggest that glycan strands in rhizobium murein can be protected at the reducing end by short oligoglucans except for 1,6-anhydromuramic acid residues.
[1]. J.R. Broadbent D.J. McMahon D.L. Welker C.J. Oberg S. Moineau 2003 J. Dairy Sci. 86 406.
[2]. Y. Haishima O. Holst H. Brade 1992 Eur. J. Biochem. 203 127.
[3]. N. Fraysse F. Couderc V. Poinsot 2003 Eur. J. Biochem. 270 1365.
[4]. I.G. Boneca 2005 Curr. Opin. Microbiol. 8 46.
[5]. S. Kasapis E.R. Morris M. Gross K. Rudolph 1994 Carbohydr. Pol. 23 55.
[6]. I. Sutherland 2002 Microbiol. Today 29 70.
[7]. H. Formanek K.H. Schleifer H.P. Seidel 1976 FEBS Lett. 70 150.
[8]. D. Pink J. Moeller B. Quinn M. Jericho T. Beverige 2000 J. Bacteriol. 182 5925.
[9]. T. Nambut K. Kutsukake 2000 Microbiology 146 1171.
[10]. J.L. Strominger J.M. Ghuysen 1963 Biochem. Biophys. Res. Commun. 12 418.
[11]. D. Button A.R. Archibald J. Baddiley 1966 Biochem. J. 99 11c.
[12]. Y. Sasaki Y. Araki E. Ito 1980 Biochem. Biophys. Res. Commun. 96 529.
[13]. H.J. Rogers H.R. Perkins J.W. Ward 1980 Microbial Cell Walls and Membranes Chapman and Hall New York.
[14]. T.E. Rohr G.N. Levy N.J. Stark J.S. Anderson 1977 J. Biol. Chem. 252 3460.
[15]. E. Pittenauer J.C. Quintela E.R. Schmidt G. Allmeier G. Paulus M.A. de Pedro 1995 J. Am. Mass Spectrom. 6 892.
[16]. L. Deng D.L. Kasper T.P. Krick M.R. Wessels 2000 J. Biol. Chem. 275 7497.
[17]. J. Coyette J.M. Ghuysen 1970 Am. Gasser. Biochem. 9 2935.
[18]. H. Iwasaki Y. Araki S. Kaya E. Ito 1989 Eur. J. Biochem. 178 635.
[19]. K. Amano S. Hazama Y. Araki E. Ito 1977 Eur. J. Biochem. 75 513.
[20]. M. Daffe M. McNeil P.J. Brennan 1993 Carbohydr Res. 249 383.
[21]. T. Hirao M. Sato A. Shirahata Y. Kamio 2000 J. Bacteriol. 182 1154.
[22]. D.J. Tipper 1968 Biochemistry 7 1441.
[23]. J.V. Höltje 1998 Microbiol. Mol. Biol. Rev. 62 181.
[24]. H. Harz H. Burgdorf J.V. Höltje 1990 Anal. Biochem. 190 120.
[25]. W. Drożański D. Drożańska Z. Lorkiewicz E. Wąsowicz 1981 Acta Microbiol. Polon. 30 371.
[26]. M. Vincent 1970 A Manual for the Practical Study of Root-Nodule Bacteria Blackwell Oxford.
[27]. O. Westphal K. Jann 1965 Methods Carbohydr. Chem. 5 83.
[28]. E.G. Bligh J.W. Dyer 1959 Can. J. Biochem. Physiol. 37 911.
[29]. W. Weidel H. Frank H.H. Martin 1960 J. Gen. Microbiol. 22 158.
[30]. W. Drożański 1983 Acta Microbiol. Polon. 32 161.
[31]. K. Hantke V. Braun 1973 Eur. J. Biochem. 34 284.
[32]. L.P.T.M. Zevenhuizen A.R.W. van Neerven 1983 Carbohydr. Res. 24 166.
[33]. K. Bal L. Larsson 2000 J. Chromatogr. B. 738 57.
[34]. M.G. Davies A.J. Thomas 1973 J. Sci. Food Agric. 24 1525.
[35]. A. Zenker B. Pfanzagl W. Löffelhardt G. Allmaier 1998 J. Microbiol. Methods 32 237.
[36]. R. Guevremont V.P. Pathak J.L.C. Wright 1990 Org. Mass Spectrom. 25 101.
[37]. N. Ausmes H. Jonsson S. Höglund H. Ljunggren M. Linberg 1999 Microbiology 145 1253.
[38]. M.W. Breedveld H.C.J. Canter Cremers M. Batley M.A. Posthumus L.P.T.M. Zevenhuizen C.A. Wijffelman A.J.B. Zehnder 1993 J. Bacteriol. 175 750.
[39]. R.W. Carlson R.E. Sanders C. Napoli P. Albersheim 1978 Plant Physiol. 62 912.
[40]. H.P. Cheng G.C. Walker 1998 J. Bacteriol. 180 5183.
[41]. A.M. Hirsch 1999 Curr. Opin. Plant Biol. 2 320.
[42]. E.L. Kannenberg N.J. Brewin 1994 Trends Microbiol. 2 277.
[43]. H.P. Spaink 2000 Annu. Rev. Microbiol. 54 257.
[44]. T.J. William P.E. Macdonald S.D. Jones C.E. Pankhurst 1987 J. Gen. Microbiol. 133 2617.
[45]. T.Y. Lin E.C. Gotschlich 1967 J. Biol. Chem. 242 471.
[46]. U.J. Jurgens J. Weckesser 1986 J. Bacteriol. 168 568.
[47]. R.S. Rosenthal G.D. Shockman 1975 J. Bacteriol. 124 410.
[48]. M. Terrak T.K. Ghost J. van Heijenoort J. van Beeumen M. Lampilas J. Aszodi J.A. Ayala J.M. Ghuysen M. Nguyen-Distéche 1999 Mol. Microbiol. 34 350.
[49]. F. Nanjo K. Sakai T. Usui 1988 J. Biochem. 104 255.