An efficient ionic liquid-based microwave-assisted (IL-MAE) method has been developed for extraction of dehydrocavidine from Corydalis saxicola Bunting (C. saxicola) for subsequent rapid analysis by high-performance liquid chromatography (HPLC). The yield of dehydrocavidine reached 9.446 mg g−1 within 10 min under the optimum IL-MAE conditions (1.5 mol L−1 [hmim]Br as extraction solvent, liquid-to-solid ratio 20:1 (mL:g), and extraction temperature 70°C). Compared with conventional procedures, the proposed IL-MAE method has many advantages, for example high extraction yield, short extraction time, low solvent consumption, no use of volatile organic solvents, and no further sample clean-up before HPLC analysis. The method was validated for limit of detection (LOD) and quantification (LOQ), linearity, precision, recovery, and reproducibility. The calibration range was 5.0–200 mg L−1 and the correlation coefficient, r, was 0.9996. The LOD and LOQ were 0.035 and 0.12 mg L−1, respectively. The relative standard deviations of intra-day and inter-day assays were below 2.6% and 6.5%, respectively. Recovery was between 93.8% and 109.3% with RSD values below 5.0%. The method can be used for rapid and effective extraction and analysis of active components from medicinal plants.
[1]. J. Wei S. Jiang Y. Jiang X. Qi H. Tang 2006 J. Guangxi Academy Sci. 22 108.
[2]. Y. Mao Y. Liang 2006 Lishizhen Med. Materia Medica Res. 17 630.
[3]. H. Li W. Zhang C. Zhang R. Liu X. Wang X. Wang J. Zhu C. Chen 2006 J. Pharm. Biomed. Anal. 41 1342.
[4]. N. Sun G. Lu B. Yuan B. Yuan 2006 Trad. Chin. Drug Res. Clin. Pharmacol. 17 78.
[5]. H. Li T. Han R. Liu C. Zhang H. Chen W. Zhang 2008 Chem. Biodivers. 5 777.
[6]. Y. Huo C. Guo Q. Zhang W. Chen H. Zheng K. Rahman L. Qin 2007 Phytomedicine 14 143.
[7]. T. Wang N. Sun W. Zhang H. Li G. Lu B. Yuan H. Jiang J. She C. Zhang 2008 J. Ethnopharmacol. 117 300.
[8]. W. Jiang C.L. Mo X.Z. Huang L. Ling 2006 Chin. Trad. Herb Drugs 37 1017.
[9]. H. Li W. Zhang C. Zhang T. Han R. Liu J. Hu H. Chen 2007 Phytochem. Anal. 18 393.
[10]. X. Cheng D. Wang L. Jiang D. Yang 2008 Phytochem. Anal. 19 420.
[11]. C.S. Eskilsson E. Björklund 2000 J. Chromatogr. A 902 227.
[12]. C. Deng N. Liu M. Gao X. Zhang 2007 J. Chromatogr. A 1153 90.
[13]. K. Madej 2009 Trends Anal. Chem. 28 436.
[14]. F. Du X. Xiao G. Li 2007 J. Chromatogr. A 1140 56.
[15]. F. Du X. Xiao X. Luo G. Li 2009 Talanta 78 1177.
[16]. F. Du X. Xiao G. Li 2007 Chin. J. Anal. Chem. 35 1570.
[17]. Y. Lu W. Ma R. Hu X. Dai Y. Pan 2008 J. Chromatogr. A 1208 42.
[18]. V. Pino J.L. Anderson J.H. Ayala V. González A.M. Afonso 2008 J. Chromatogr. A 1182 145.
[19]. X. Xiao Z. Guo J. Deng G. Li 2009 Sep. Purif. Technol. 68 250.
[20]. V.I. Pârvulescu C. Hardacre 2007 Chem. Rev. 107 2615.
[21]. T. Ueki M. Watanabe 2008 Macromolecules 41 3739.
[22]. A.M. Stalcup B. Cabovska 2005 J. Liquid Chromatogr. Rel. Technol. 27 1443.
[23]. J.L. Anderson D.W. Armstrong G. Wei 2006 Anal. Chem. 78 2893.
[24]. A. Berthod M.J. Ruiz-Ángel S. Carda-Broch 2008 J. Chromatogr. A 1184 6.
[25]. D. Zhao Y. Liao Z. Zhang 2007 Clean 35 42.
[26]. M. Smiglak A. Metlen R.D. Rogers 2007 Acc. Chem. Res. 40 1182.
[27]. N.V. Plechkova K.R. Seddon 2008 Chem. Soc. Rev. 37 123.
[28]. J. Liu J.A. Jönsson G. Jiang 2005 Trends Anal. Chem. 24 20.
[29]. R. Liu J. Liu Y. Yin X. Hu G. Jiang 2009 Anal. Bioanal. Chem. 393 871.
[30]. X. Li W. Geng J. Zhou W. Luo F. Wang L. Wang S.C. Tsang 2007 New J. Chem. 31 2088.
[31]. G. Zhao T. Jiang H. Gao B. Han J. Huang D. Sun 2004 Green Chem. 6 75.
[32]. J.L. Anderson J. Ding T. Welton D.W. Armstrong 2002 J. Am. Chem. Soc. 124 14247.
[33]. L. Crowhurst P.R. Mawdsley J.M. Perez-Arlandis P.A. Salter T. Welton 2003 Phys. Chem. Chem. Phys. 5 2790.
[34]. Y. Zhao S. Gao J. Wang J. Tang 2008 J. Phys. Chem. B 112 2031.
[35]. D.R. Baghurst D.M.P. Mingos 1992 J. Chem. Soc., Chem. Commun. 9 674.