The process of steam co-gasification of hard coal and biomass is regarded as environment friendly alternative to classical fossil fuel combustion, especially in the light of continuous increase in energy demand and recognition of environmental concerns related to fossil fuel processing. In the paper, the results of experimental comparative study of steam gasification and co-gasification of hard coal and energy crop (Andropogon gerardii) biomass in a laboratory-scale fixed bed reactor at the temperatures of 700, 800, and 900°C are presented. The gas chromatography technique was used in analyses of concentrations of the main product gas components, that is, hydrogen, carbon monoxide, carbon dioxide, and methane. Some regularities in terms of variations between gasification and co-gasification product gas composition were observed, e.g., carbon monoxide content in biomass gasification and co-gasification product gas was on average approximately half the amount observed in hard coal gasification. Application of Fe2O3 and CaO in co-gasification led to increase in hydrogen content with simultaneous CO2 capture. Chemisorption of CO2 with CaO in the process of steam co-gasification was effective at 700°C and 800°C and resulted in average hydrogen content increase from 61 to 87%vol and from 62 to 76%vol at 700°C and 800°C, respectively, when compared to co-gasification without Fe2O3 and CaO.
[1]. Agencja Rynku Energii (2011): Rynek Energii Elektrycznej, http://www.cire.pl/rynekenergii/podstawa.php?smid=207#produkcja.
[2]. US Energy Information Administration (2010): International Energy Outlook 2010, EIA, Washington, www.eia.gov/oiaf/ieo/index.html.
[4]. US National Energy Laboratory (2010): Gasification Technology Database, http://ww.netl.doe.gov/technologies/coalpower/gasification/worlddatabase/summary.html.
[8]. K. Kumabe T. Hanaoka S. Fujimoto T. Minowa K. Sakanishi 2007 Fuel 86 684.
[9]. K. Li R. Zhang J. Bi 2010 Int. J. Hydrogen Energ. 35 2722.
[10]. M. Lapuerta J.J. Hernández A. Pazo J. López 2008 Fuel 89 828.
[11]. J. Fermoso B. Arias M.V. Gil M.G. Plaza C. Pevida J.J. Pis R. Rubiera 2010 Bioresource Technol. 101 3230.
[12]. A.G. Collot Y. Zhuo D.R. Dugwell R. Kandiyoti 1999 Fuel 79 667.
[13]. K. Sjöström G. Chen Q. Yu C. Brage C. Rosen 1999 Fuel 78 1189.
[14]. Y.G. Pan E. Velo X. Roca J.J. Manya L. Puigjaner 2000 Fuel 79 1317.
[15]. J. Fermoso B. Arias M.G. Plaza C. Pevida F. Rubiera J.J. Pis F. García-Peña P. Casero 2009 Fuel Process. Technol. 90 926.
[16]. R.N. Andre F. Pinto C. Franco M. Diasa I. Gulyurtlu M.A.A. Matos I. Cabrita 2005 Fuel 84 1635.
[17]. L. Zhang S. Xu W. Zhao S. Liu 2007 Fuel 86 353.
[18]. T. Sonobe N. Worasuwannarak S. Pipatmanomai 2008 Fuel Process. Technol. 89 1371.
[19]. F. Pinto H. Lopes R.N. Andre I. Gulyurtlu I. Cabrita 2007 Fuel 86 2052.
[20]. R.C. Brown O. Liua G. Norton 2000 Biomass Bioenerg. 18 499.
[21]. F. Pinto C. Franco H. Lopes R.N. Andre I. Gulyurtlu I. Cabrita 2005 Fuel 84 2236.
[22]. J. Wang M. Jiang Y. Yao Y. Zhang J. Cao 2009 Fuel 88 1572.
[23]. A. Smoliński 2008 Arch. Environ. Prot. 34 23.
[24]. A. Smoliński 2011 Energ. Conv. Manag. 52 37.
[25]. I. Aigner C. Pfeifer H. Hofbauer 2011 Fuel 90 2404.