This study is devoted to the thin-layer chromatographic demonstration of spontaneous chiral conversion of l-hydroxyproline (l-Hyp) to d-hydroxyproline (d-Hyp), and to its spontaneous peptidization, when dissolved in 70% aqueous methanol and stored at room temperature in a stoppered glass vessel. The adopted enantioseparation conditions were the same ones, as employed earlier for a successful enantioseparation of l- and d-proline. To this effect, we used microcrystalline cellulose as stationary phase and a quaternary mixture composed of 2-butanol:pyridine:glacial acetic acid:water (30:20:4:24, v/v) as mobile phase. Structural difference between proline and hydroxyproline consists in the presence of one hydroxyl group per molecule of the latter amino acid, which makes the respective enantioseparation a more difficult task. Consequently, the obtained separation effect was not a complete (i.e., a baseline) resolution of the two Hyp antimers yet a sufficient enough proof of the appearance of d-Hyp, apparently due to spontaneous chiral conversion taking place in the course of the l-Hyp solution storage and ageing period. The condensation products were discovered both in the fresh and the aged l-Hyp solution, yet in the aged sample, the condensation product yields were considerably higher than in the freshly prepared one (as convincingly demonstrated by mass spectrometry). Demonstration of the condensation products was performed with the aid of thin-layer chromatography (TLC), liquid chromatography-mass spectrometry (LC-MS), and thin-layer chromatography-mass spectrometry (TLC-MS).
[1]. S.W. Fox K. Harada 1958 Science 128 1214.
[2]. S.W. Fox 1958 J. Chem. Ed 34 472–479.
[3]. E. Gil-Av B. Feibush R. Charles-Sigler 1966 Tetrahedron Lett 7 1009–1015.
[4]. E. Gil-Av B. Feibush 1967 Tetrahedron Lett 8 3345–3347.
[5]. H. Elster E. Gil-Av S. Weiner 1981 J. Archaeol. Sci 10 605–617.
[6]. J.F. Bada 1981 Earth Planet. Sci. Lett 55 292–298.
[7]. J.F. Bada 1985 Ann. Rev. Earth Planet Sci 13 241–268.
[8]. G. A. Goodfriend 1992 Nature 357 399–401.
[9]. J.L. Bada G.D. McDonald 1995 Icarus 114 139–143.
[10]. R. Baum G.G. Smith 1986 J. Am. Chem. Soc 108 7325–7327.
[11]. T. Shiraiwa T. Furukawa T. Tsuchida S. Sakata M. Sunami H. Kurokawa 1991 Bull. Chem. Soc. Jpn 64 3729–3731.
[12]. G.G. Smith T. Sivakua 1983 J. Org. Chem., J. Org. Chem 48 627–634.
[13]. H.L. Van Maanen H. Kleijn J.T.B.H. Jastrzebski J. Verveji A.P.G. Kieboom G. Van Koten 1995 J. Org. Chem 60 4331–4338.
[14]. M. Sajewicz M. Gontarska D. Kronenbach T. Kowalska 2009 Acta Chromatogr 21 151–160.
[15]. M. Sajewicz , M. Gontarska, and T. Kowalska, J. Chromatogr. Sci., DOI:10.1093/chromsci/bmt033.
[16]. M. Sajewicz M. Matlengiewicz M. Juziuk M. Penkala M. Weloe M. Schulz T. Kowalska 2013 J. Liq. Chromatogr. Relat. Technol 36 2497–2511.
[17]. M. Sajewicz M. Matlengiewicz M. Leda M. Gontarska D. Kronenbach T. Kowalska I.R. Epstein 2010 J. Phys. Org. Chem 23 1066–1073.
[18]. M. Sajewicz M. Gontarska D. Kronenbach M. Leda T. Kowalska I.R. Epstein 2010 J. Syst. Chem 1 7.
[19]. S.F. Contractor J. Wragg 1965 Nature 208 71–72.
[20]. S. Yuasa A. Shimada M. Isoyama T. Fukuhara M. Itoh 1986 Chromatographia 21 79–82.