View More View Less
  • 1 Jamia Millia Islamia University, Jamia Nagar, Delhi, India
Open access

The present day genetic architecture of a species bears much significance to its closely related species which is due to species-specific differences, shaped by different evolutionary forces across time scale. With the availability of whole genome sequence of several closely related species, it is now possible to infer evolutionary patterns of genes and genomes in specific lineages. To this respect, CD4 gene, primarily responsible for defensive mechanism in human, is conserved across a few taxa, and thus, comparative genomic studies could be useful for better understanding of host—pathogen biology. Comparative and evolutionary analyses were performed in eleven taxa (10 mammalian and avian) with different statistical algorithms. Phylogenetic inferences revealed recent divergence of human and chimpanzee, and pig was found to be diverged from rest of the taxa significantly. Additionally, gene length, microsatellites, and secondary structures were observed across taxa. The genetic architecture of CD4 gene and its evolutionary history in different mammalian taxa provide crucial evidence in support of the fact that this gene might have been evolving at a similar rate to other human immune system genes. Future population-based study and structural modeling would unravel the differential ability to interact with HIV virus and influence immune system in humans.

  • 1.

    Caicedo L , Purugganan D: Comparative plant genomics: frontiers and prospects. Plant Physiol 138, 545547 (2005)

  • 2.

    Gil P , Gil Berglund E: CYP2C8 and anti-malarial drug efficacy. Pharmacogenomics 8, 187198 (2007)

  • 3.

    Clark J , Jefferies A, Barclay N, Gagnon J, Williams F: Peptide and nucleotide sequences of rat CD4 (W3/25) antigen: evidence for derivation from a structure with four immunoglobulinrelated domains. Proc Natl Acad Sci USA 84, 1649 (1987)

    • Search Google Scholar
    • Export Citation
  • 4.

    Groot F , Kuijpers W, Berkhout B, de Jong C: Dendritic cellmediated HIV-1 transmission to T cells of LAD-1patients is impaired due to the defect in LFA-1. Retrovirology 3, 75 (2006)

    • Search Google Scholar
    • Export Citation
  • 5.

    Stein S , Gowda D, Lifson D, Penhallow C, Bensch G, Engleman G: pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane. Cell 49(5), 659668 (1987)

    • Search Google Scholar
    • Export Citation
  • 6.

    DR Littman : The structure of the CD4 and CD8 genes. Annu Rev Immunol 5, 561584 (1987)

  • 7.

    Maddon J , Dalgleish G, McDougal S, Clapham R, Weiss A, Axel R: The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47, 333348 (1986)

    • Search Google Scholar
    • Export Citation
  • 8.

    NCBI: [www.nlm.nih.gov]

  • 9.

    Pearson’s correlation coefficient: [http://analyse-it.com]

  • 10.

    Alignment algorithm: [www.dnastar.com]

  • 11.

    Phylogeny software: [www.phylogeny.fr]

  • 12.

    Dereeper A , Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M, Claverie J-M, Gascuel O: Phylogeny.fr: robust phylogenetic analysis for the nonspecialist. Nucleic Acids Res 36, W465469 (2008)

    • Search Google Scholar
    • Export Citation
  • 13.

    Microsatellite finder: [http://www.cdfd.org.in/imex]

  • 14.

    Mudunuri B , Nagarajaram A: IMEx: Imperfect Microsatellite Extractor. Bioinformatics 23, 11811187 (2007)

  • 15.

    Protein secondary structure: [http:www.ibcp.fr]

  • 16.

    Geourjon C , Deleage G: SOPM: A self optimised prediction method for protein secondary structure prediction. Protein Eng 7, 157164 (1994)

    • Search Google Scholar
    • Export Citation
  • 17.

    Han L , Zhao Z: Comparative analysis of CpG islands in four fish genomes. Comp Funct Genomics 565631 (2008)

  • 18.

    Asthana S , Noble S, Kryukov G, Grant E, Sunyaev S, Stamatoyannopoulos A: Wide distributed non-coding purifying selection in the human genome. Proc Natl Acad Sci USA 104, 1241012415 (2007)

    • Search Google Scholar
    • Export Citation
  • 19.

    Miller W , Makova D, Nekrutenko A, Hardison C: Comparative genomics. Annu Rev Genomics Hum Genet 5, 1556 (2004)

  • 20.

    Khan N , Pande V, Das A: Characterization, comparative genomic and evolutionary inferences of a human drug metabolizing (NAT2) gene. Interv Med Appl Sci 3, 6573 (2011)

    • Search Google Scholar
    • Export Citation
  • 21.

    Shakyawar K , Joshi K, Kumar D: SSR repeat dynamics in mitochondrial genomes of five domestic animal species, Bioinformation 4, 158163 (2009)

    • Search Google Scholar
    • Export Citation
  • 22.

    Ohno S (1970): Heidelberg Pearson’s correlation coefficient. Evolution by Gene Duplication. Springer-Verlag, Heidelberg [http:// analyse-it.com]

    • Search Google Scholar
    • Export Citation
  • 23.

    Sullivan C , Reitzel M: A high percentage of introns in human genes were present early in animal evolution: evidence from the basal metazoan Nematostella vectensis. Genome Informatics 17(1), 219229 (2006)

    • Search Google Scholar
    • Export Citation
  • 24.

    Tóth G , Gáspári Z, Jurka J: Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10, 967981 (2000)

  • 25.

    Bashirullah A , Cooperstock L, Lipshitz W: Spatial and temporal control of RNA stability. Proc Natl Acad Sci USA 98(13), 70257028 (2001)

    • Search Google Scholar
    • Export Citation
  • 26.

    Cogswell-Hawkinson C , McGlaughlin E, Calisher H, Adams R, Schountz T: Molecular and phylogenetic characterization of cytokine genes from Seba’s short-tailed bat (Carollia perspicillata). Open Immunol J 4(31), 3139 (2011)

    • Search Google Scholar
    • Export Citation
  • 27.

    Belov K , Sanderson E, Deakin E, Wong S, Assange D, McColl A, Gout A, de Bono B, Barrow D, Speed P, Trowsdale J, Papenfuss T: Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system. Genome Res 17(7), 982991 (2007)

    • Search Google Scholar
    • Export Citation
  • 28.

    Kumar S , Hedges B: A molecular timescale for vertebrate evolution. Nature 392, 917920 (1998)

  • 29.

    Gentles J , Wakefield J, Kohany O, Gu W, Batzer A, Pollock D, Jurka J: Evolutionary dynamics of transposable elements in the shortailed opossum Monodelphis domestica. Genome Res 17(7), 9921004 (2007)

    • Search Google Scholar
    • Export Citation
  • 30.

    Banerjee P , Gahlawat K, Joshi J, Sharma U, Tantia S, Vijh K: Sequencing, characterization and phylogenetic analysis of TLR genes of Bubalus bubalis. DHR Int J Biomed Life Sci (DHRIJBLS) 3(1), 22782301 (2012)

    • Search Google Scholar
    • Export Citation
  • 31.

    Yuen B , Bayes M, Degnan M: The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. Mol Biol Evo 31(1), 106120 (2014)

    • Search Google Scholar
    • Export Citation
  • 32.

    Rux J , Kuser R, Burnett M: Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution X-ray crystallographic, molecular modeling and sequence-based methods. J Virol 77(17), 95539566 (2003)

    • Search Google Scholar
    • Export Citation
  • 33.

    Zuccolo J , Bau J, Childs J, Goss G, Sensen W, Deans P: Phylogenetic analysis of the MS4A and TMEM176 gene families. PLoS One 23, 5(2), e9369 (2010)

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 264 224 32
PDF Downloads 20 17 1