View More View Less
  • 1 MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary

Abstract

Combined anatomical and functional evaluation of coronary artery disease (CAD) using computed tomography (CT) has recently emerged as an accurate, robust and non-invasive tool for the evaluation of ischemic heart disease. Cardiac CT has become a one-stop-shop imaging modality that allows the simultaneous depiction, characterization and quantification of coronary atherosclerosis and the assessment of myocardial ischemia. Advancements in scanner technology (improvements in spatial and temporal resolution, dual-energy imaging, wide detector panels) and the implementation of iterative reconstruction algorithms enables the detection of myocardial ischemia in both qualitative and quantitative fashion using low-dose scanning protocols. The addition of CT perfusion (CTP) to standard coronary CT angiography is a reliable tool to improve diagnostic accuracy. CTP using static first-pass imaging enables qualitative assessment of the myocardial tissue, whereas dynamic perfusion imaging can also provide quantitative information on myocardial blood flow. Myocardial tissue assessment by CTP holds the potential to refine risk in stable chest pain or microvascular dysfunction. CTP can aid the detection of residual ischemia after coronary intervention. Comprehensive evaluation of CAD using CTP might therefore improve the selection of patients for aggressive secondary prevention therapy or coronary revascularization with high diagnostic certainty. In addition, prognostic information provided by perfusion CT imaging could improve patient outcomes by quantifying the ischemic burden of the left ventricle. The current review focuses on the clinical value of myocardial perfusion imaging by CT, current status of CTP imaging and the use of myocardial CTP in various patient populations for the diagnosis of ischemic heart disease.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1.

    Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362(10):886.

    • Search Google Scholar
    • Export Citation
  • 2.

    Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U. Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol. 2014;11(7):390.

    • Search Google Scholar
    • Export Citation
  • 3.

    Yang L, Zhou T, Zhang R, Xu L, Peng Z, Ding J, Meta-analysis: diagnostic accuracy of coronary CT angiography with prospective ECG gating based on step-and-shoot, Flash and volume modes for detection of coronary artery disease. Eur Radiol. 2014;24(10):2345.

    • Search Google Scholar
    • Export Citation
  • 4.

    Shaw LJ, Hausleiter J, Achenbach S, Al-Mallah M, Berman DS, Budoff MJ, Coronary computed tomographic angiography as a gatekeeper to invasive diagnostic and surgical procedures: results from the multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: an International Multicenter) registry. Journal of the American College of Cardiology. 2012;60(20):2103.

    • Search Google Scholar
    • Export Citation
  • 5.

    Moss AJ, Williams MC, Newby DE, Nicol ED. The Updated NICE Guidelines: Cardiac CT as the First-Line Test for Coronary Artery Disease. Curr Cardiovasc Imaging Rep. 2017;10(5):15.

    • Search Google Scholar
    • Export Citation
  • 6.

    Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). European Heart Journal. 2019;41(3):407.

    • Search Google Scholar
    • Export Citation
  • 7.

    Investigators S-H, Newby DE, Adamson PD, Berry C, Boon NA, Dweck MR, Coronary CT Angiography and 5-Year Risk of Myocardial Infarction. N Engl J Med. 2018;379(10):924.

    • Search Google Scholar
    • Export Citation
  • 8.

    Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372(14):1291.

    • Search Google Scholar
    • Export Citation
  • 9.

    Hoffmann U, Ferencik M, Udelson JE, Picard MH, Truong QA, Patel MR, Prognostic Value of Noninvasive Cardiovascular Testing in Patients With Stable Chest Pain: Insights From the PROMISE Trial (Prospective Multicenter Imaging Study for Evaluation of Chest Pain). Circulation. 2017;135(24):2320.

    • Search Google Scholar
    • Export Citation
  • 10.

    Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van' t Veer M, Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213.

    • Search Google Scholar
    • Export Citation
  • 11.

    Maron DJ, Hochman JS, Reynolds HR, Bangalore S, O'Brien SM, Boden WE, Initial Invasive or Conservative Strategy for Stable Coronary Disease. N Engl J Med. 2020;382(15):1395.

    • Search Google Scholar
    • Export Citation
  • 12.

    Iwasaki K. Myocardial ischemia is a key factor in the management of stable coronary artery disease. World Journal of Cardiology. 2014;6(4):130.

    • Search Google Scholar
    • Export Citation
  • 13.

    Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. Journal of the American College of Cardiology. 2010;55(25):2816.

    • Search Google Scholar
    • Export Citation
  • 14.

    De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367(11):991.

    • Search Google Scholar
    • Export Citation
  • 15.

    Boden WE, O'Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503.

    • Search Google Scholar
    • Export Citation
  • 16.

    Curzen N, Rana O, Nicholas Z, Golledge P, Zaman A, Oldroyd K, Does routine pressure wire assessment influence management strategy at coronary angiography for diagnosis of chest pain?: the RIPCORD study. Circ Cardiovasc Interv. 2014;7(2):248.

    • Search Google Scholar
    • Export Citation
  • 17.

    Schuijf JD, Wijns W, Jukema JW, Atsma DE, de Roos A, Lamb HJ, Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol. 2006;48(12):2508.

    • Search Google Scholar
    • Export Citation
  • 18.

    Seitun S, De Lorenzi C, Cademartiri F, Buscaglia A, Travaglio N, Balbi M, CT Myocardial Perfusion Imaging: A New Frontier in Cardiac Imaging. Biomed Res Int. 2018;2018:7295460.

    • Search Google Scholar
    • Export Citation
  • 19.

    Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107(23):2900.

    • Search Google Scholar
    • Export Citation
  • 20.

    Seitun S, Castiglione Morelli M, Budaj I, Boccalini S, Galletto Pregliasco A, Valbusa A, Stress Computed Tomography Myocardial Perfusion Imaging: A New Topic in Cardiology. Rev Esp Cardiol (Engl Ed). 2016;69(2):188.

    • Search Google Scholar
    • Export Citation
  • 21.

    Techasith T, Cury RC. Stress myocardial CT perfusion: an update and future perspective. JACC Cardiovasc Imaging. 2011;4(8):905.

  • 22.

    Baxa J, Hromadka M, Sedivy J, Stepankova L, Molacek J, Schmidt B, Regadenoson-Stress Dynamic Myocardial Perfusion Improves Diagnostic Performance of CT Angiography in Assessment of Intermediate Coronary Artery Stenosis in Asymptomatic Patients. Biomed Res Int. 2015;2015:105629.

    • Search Google Scholar
    • Export Citation
  • 23.

    Bischoff B, Bamberg F, Marcus R, Schwarz F, Becker HC, Becker A, Optimal timing for first-pass stress CT myocardial perfusion imaging. Int J Cardiovasc Imaging. 2013;29(2):435.

    • Search Google Scholar
    • Export Citation
  • 24.

    Cademartiri F, Seitun S, Clemente A, La Grutta L, Toia P, Runza G, Myocardial blood flow quantification for evaluation of coronary artery disease by computed tomography. Cardiovasc Diagn Ther. 2017;7(2):129.

    • Search Google Scholar
    • Export Citation
  • 25.

    Arnoldi E, Lee YS, Ruzsics B, Weininger M, Spears JR, Rowley CP, CT detection of myocardial blood volume deficits: dual-energy CT compared with single-energy CT spectra. J Cardiovasc Comput Tomogr. 2011;5(6):421.

    • Search Google Scholar
    • Export Citation
  • 26.

    George RT, Jerosch-Herold M, Silva C, Kitagawa K, Bluemke DA, Lima JA, Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Invest Radiol. 2007;42(12):815.

    • Search Google Scholar
    • Export Citation
  • 27.

    Danad I, Szymonifka J, Schulman-Marcus J, Min JK. Static and dynamic assessment of myocardial perfusion by computed tomography. Eur Heart J Cardiovasc Imaging. 2016;17(8):836.

    • Search Google Scholar
    • Export Citation
  • 28.

    Pontone G, Baggiano A, Andreini D, Guaricci AI, Guglielmo M, Muscogiuri G, Dynamic Stress Computed Tomography Perfusion With a Whole-Heart Coverage Scanner in Addition to Coronary Computed Tomography Angiography and Fractional Flow Reserve Computed Tomography Derived. JACC Cardiovasc Imaging. 2019;12(12):2460.

    • Search Google Scholar
    • Export Citation
  • 29.

    Rossi A, Dharampal A, Wragg A, Davies LC, van Geuns RJ, Anagnostopoulos C, Diagnostic performance of hyperaemic myocardial blood flow index obtained by dynamic computed tomography: does it predict functionally significant coronary lesions? Eur Heart J Cardiovasc Imaging. 2014;15(1):85.

    • Search Google Scholar
    • Export Citation
  • 30.

    Bamberg F, Marcus RP, Becker A, Hildebrandt K, Bauner K, Schwarz F, Dynamic myocardial CT perfusion imaging for evaluation of myocardial ischemia as determined by MR imaging. JACC Cardiovasc Imaging. 2014;7(3):267.

    • Search Google Scholar
    • Export Citation
  • 31.

    Bamberg F, Becker A, Schwarz F, Marcus RP, Greif M, von Ziegler F, Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic CT-based myocardial perfusion imaging. Radiology. 2011;260(3):689.

    • Search Google Scholar
    • Export Citation
  • 32.

    Coenen A, Rossi A, Lubbers MM, Kurata A, Kono AK, Chelu RG, Integrating CT Myocardial Perfusion and CT-FFR in the Work-Up of Coronary Artery Disease. JACC Cardiovasc Imaging. 2017;10(7):760.

    • Search Google Scholar
    • Export Citation
  • 33.

    Kono AK, Coenen A, Lubbers M, Kurata A, Rossi A, Dharampal A, Relative myocardial blood flow by dynamic computed tomographic perfusion imaging predicts hemodynamic significance of coronary stenosis better than absolute blood flow. Invest Radiol. 2014;49(12):801.

    • Search Google Scholar
    • Export Citation
  • 34.

    Rossi A, Wragg A, Klotz E, Pirro F, Moon JC, Nieman K, Dynamic Computed Tomography Myocardial Perfusion Imaging: Comparison of Clinical Analysis Methods for the Detection of Vessel-Specific Ischemia. Circ Cardiovasc Imaging. 2017;10(4).

    • Search Google Scholar
    • Export Citation
  • 35.

    Greif M, von Ziegler F, Bamberg F, Tittus J, Schwarz F, D'Anastasi M, CT stress perfusion imaging for detection of haemodynamically relevant coronary stenosis as defined by FFR. Heart. 2013;99(14):1004.

    • Search Google Scholar
    • Export Citation
  • 36.

    Brusen R, Branch K. Myocardial CT Perfusion: A Review of Current Modalities, Technology, and Clinical Performance. Current Cardiovascular Imaging Reports. 2017;10(8):25.

    • Search Google Scholar
    • Export Citation
  • 37.

    Patel AR, Bamberg F, Branch K, Carrascosa P, Chen M, Cury RC, Society of cardiovascular computed tomography expert consensus document on myocardial computed tomography perfusion imaging. J Cardiovasc Comput Tomogr. 2020;14(1):87.

    • Search Google Scholar
    • Export Citation
  • 38.

    Kikuchi Y, Oyama-Manabe N, Naya M, Manabe O, Tomiyama Y, Sasaki T, Quantification of myocardial blood flow using dynamic 320-row multi-detector CT as compared with (1)(5)O-H(2)O PET. Eur Radiol. 2014;24(7):1547.

    • Search Google Scholar
    • Export Citation
  • 39.

    Bettencourt N, Chiribiri A, Schuster A, Ferreira N, Sampaio F, Pires-Morais G, Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease. Journal of the American College of Cardiology. 2013;61(10):1099.

    • Search Google Scholar
    • Export Citation
  • 40.

    Ko BS, Cameron JD, Meredith IT, Leung M, Antonis PR, Nasis A, Computed tomography stress myocardial perfusion imaging in patients considered for revascularization: a comparison with fractional flow reserve. Eur Heart J. 2012;33(1):67.

    • Search Google Scholar
    • Export Citation
  • 41.

    Tamarappoo BK, Gutstein A, Cheng VY, Nakazato R, Gransar H, Dey D, Assessment of the relationship between stenosis severity and distribution of coronary artery stenoses on multislice computed tomographic angiography and myocardial ischemia detected by single photon emission computed tomography. J Nucl Cardiol. 2010;17(5):791.

    • Search Google Scholar
    • Export Citation
  • 42.

    George RT, Mehra VC, Chen MY, Kitagawa K, Arbab-Zadeh A, Miller JM, Myocardial CT perfusion imaging and SPECT for the diagnosis of coronary artery disease: a head-to-head comparison from the CORE320 multicenter diagnostic performance study. Radiology. 2014;272(2):407.

    • Search Google Scholar
    • Export Citation
  • 43.

    Cury RC, Kitt TM, Feaheny K, Blankstein R, Ghoshhajra BB, Budoff MJ, A randomized, multicenter, multivendor study of myocardial perfusion imaging with regadenoson CT perfusion vs single photon emission CT. J Cardiovasc Comput Tomogr. 2015;9(2):103.

    • Search Google Scholar
    • Export Citation
  • 44.

    Takx RA, Blomberg BA, El Aidi H, Habets J, de Jong PA, Nagel E, Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging. 2015;8(1).

    • Search Google Scholar
    • Export Citation
  • 45.

    Sorgaard MH, Kofoed KF, Linde JJ, George RT, Rochitte CE, Feuchtner G, Diagnostic accuracy of static CT perfusion for the detection of myocardial ischemia. A systematic review and meta-analysis. J Cardiovasc Comput Tomogr. 2016;10(6):450.

    • Search Google Scholar
    • Export Citation
  • 46.

    Pontone G, Baggiano A, Andreini D, Guaricci AI, Guglielmo M, Muscogiuri G, Stress Computed Tomography Perfusion Versus Fractional Flow Reserve CT Derived in Suspected Coronary Artery Disease: The PERFECTION Study. JACC Cardiovasc Imaging. 2019;12(8 Pt 1):1487.

    • Search Google Scholar
    • Export Citation
  • 47.

    Baggiano A, Fusini L, Del Torto A, Vivona P, Guglielmo M, Muscogiuri G, Sequential Strategy Including FFRCT Plus Stress-CTP Impacts on Management of Patients with Stable Chest Pain: The Stress-CTP RIPCORD Study. J Clin Med. 2020;9(7).

    • Search Google Scholar
    • Export Citation
  • 48.

    Lubbers M, Coenen A, Kofflard M, Bruning T, Kietselaer B, Galema T, Comprehensive Cardiac CT With Myocardial Perfusion Imaging Versus Functional Testing in Suspected Coronary Artery Disease: The Multicenter, Randomized CRESCENT-II Trial. JACC Cardiovasc Imaging. 2018;11(11):1625.

    • Search Google Scholar
    • Export Citation
  • 49.

    Yu M, Shen C, Dai X, Lu Z, Wang Y, Lu B, Clinical Outcomes of Dynamic Computed Tomography Myocardial Perfusion Imaging Combined With Coronary Computed Tomography Angiography Versus Coronary Computed Tomography Angiography-Guided Strategy. Circ Cardiovasc Imaging. 2020;13(1):e009775.

    • Search Google Scholar
    • Export Citation
  • 50.

    van Rosendael AR, Dimitriu-Leen AC, de Graaf MA, van Zwet EW, Jukema JW, Bax JJ, Impact of computed tomography myocardial perfusion following computed tomography coronary angiography on downstream referral for invasive coronary angiography, revascularization and, outcome at 12 months. Eur Heart J Cardiovasc Imaging. 2017;18(9):969.

    • Search Google Scholar
    • Export Citation
  • 51.

    Sharma RK, Arbab-Zadeh A, Kishi S, Chen MY, Magalhaes TA, George RT, Incremental diagnostic accuracy of computed tomography myocardial perfusion imaging over coronary angiography stratified by pre-test probability of coronary artery disease and severity of coronary artery calcification: The CORE320 study. Int J Cardiol. 2015;201:570.

    • Search Google Scholar
    • Export Citation
  • 52.

    Nakamura S, Kitagawa K, Goto Y, Omori T, Kurita T, Yamada A, Incremental Prognostic Value of Myocardial Blood Flow Quantified With Stress Dynamic Computed Tomography Perfusion Imaging. JACC Cardiovasc Imaging. 2019;12(7 Pt 2):1379.

    • Search Google Scholar
    • Export Citation
  • 53.

    van Assen M, De Cecco CN, Eid M, von Knebel Doeberitz P, Scarabello M, Lavra F, Prognostic value of CT myocardial perfusion imaging and CT-derived fractional flow reserve for major adverse cardiac events in patients with coronary artery disease. J Cardiovasc Comput Tomogr. 2019;13(3):26.

    • Search Google Scholar
    • Export Citation
  • 54.

    Meinel FG, Pugliese F, Schoepf UJ, Ebersberger U, Wichmann JL, Lo GG, Prognostic Value of Stress Dynamic Myocardial Perfusion CT in a Multicenter Population With Known or Suspected Coronary Artery Disease. AJR Am J Roentgenol. 2017;208(4):761.

    • Search Google Scholar
    • Export Citation
  • 55.

    Pontone G, De Cecco C, Baggiano A, Guaricci AI, Guglielmo M, Leiner T, Design of CTP-PRO study (impact of stress Cardiac computed Tomography myocardial Perfusion on downstream resources and PROgnosis in patients with suspected or known coronary artery disease: A multicenter international study). Int J Cardiol. 2019;292:253.

    • Search Google Scholar
    • Export Citation
  • 56.

    Ho KT, Ong HY, Tan G, Yong QW. Dynamic CT myocardial perfusion measurements of resting and hyperaemic blood flow in low-risk subjects with 128-slice dual-source CT. Eur Heart J Cardiovasc Imaging. 2015;16(3):300.

    • Search Google Scholar
    • Export Citation
  • 57.

    Yu M, Chen X, Dai X, Pan J, Wang Y, Lu B, The Value of Low-Dose Dynamic Myocardial Perfusion CT for Accurate Evaluation of Microvascular Obstruction in Patients With Acute Myocardial Infarction. AJR American journal of roentgenology. 2019;213(4):798.

    • Search Google Scholar
    • Export Citation
  • 58.

    Schuijf JD, Matheson MB, Ostovaneh MR, Arbab-Zadeh A, Kofoed KF, Scholte A, Ischemia and No Obstructive Stenosis (INOCA) at CT Angiography, CT Myocardial Perfusion, Invasive Coronary Angiography, and SPECT: The CORE320 Study. Radiology. 2020;294(1):61.

    • Search Google Scholar
    • Export Citation
  • 59.

    Rief M, Zimmermann E, Stenzel F, Martus P, Stangl K, Greupner J, Computed tomography angiography and myocardial computed tomography perfusion in patients with coronary stents: prospective intraindividual comparison with conventional coronary angiography. Journal of the American College of Cardiology. 2013;62(16):1476.

    • Search Google Scholar
    • Export Citation
  • 60.

    Linde JJ, Hove JD, Sorgaard M, Kelbaek H, Jensen GB, Kuhl JT, Long-Term Clinical Impact of Coronary CT Angiography in Patients With Recent Acute-Onset Chest Pain: The Randomized Controlled CATCH Trial. JACC Cardiovasc Imaging. 2015;8(12):1404.

    • Search Google Scholar
    • Export Citation
  • 61.

    Sorgaard MH, Linde JJ, Kuhl JT, Kelbaek H, Hove JD, Fornitz GG, Value of Myocardial Perfusion Assessment With Coronary Computed Tomography Angiography in Patients With Recent Acute-Onset Chest Pain. JACC Cardiovasc Imaging. 2018;11(11):1611.

    • Search Google Scholar
    • Export Citation
  • 62.

    Linde JJ, Sorgaard M, Kuhl JT, Hove JD, Kelbaek H, Nielsen WB, Prediction of clinical outcome by myocardial CT perfusion in patients with low-risk unstable angina pectoris. Int J Cardiovasc Imaging. 2017;33(2):261.

    • Search Google Scholar
    • Export Citation
  • 63.

    Han R, Sun K, Lu B, Zhao R, Li K, Yang X. Diagnostic accuracy of coronary CT angiography combined with dual-energy myocardial perfusion imaging for detection of myocardial infarction. Exp Ther Med. 2017;14(1):207.

    • Search Google Scholar
    • Export Citation
  • 64.

    Nakauchi Y, Iwanaga Y, Ikuta S, Kudo M, Kobuke K, Murakami T, Quantitative myocardial perfusion analysis using multi-row detector CT in acute myocardial infarction. Heart. 2012;98(7):566.

    • Search Google Scholar
    • Export Citation
  • 65.

    Pan J, Yuan M, Yu M, Gao Y, Shen C, Wang Y, Myocardial Blood Flow Quantified by Low-Dose Dynamic CT Myocardial Perfusion Imaging Is Associated with Peak Troponin Level and Impaired Left Ventricle Function in Patients with ST-Elevated Myocardial Infarction. Korean J Radiol. 2019;20(5):709.

    • Search Google Scholar
    • Export Citation
  • 66.

    Meinel FG, Ebersberger U, Schoepf UJ, Lo GG, Choe YH, Wang Y, Global quantification of left ventricular myocardial perfusion at dynamic CT: feasibility in a multicenter patient population. AJR American journal of roentgenology. 2014;203(2):W174.

    • Search Google Scholar
    • Export Citation
  • 67.

    Meinel FG, Wichmann JL, Schoepf UJ, Pugliese F, Ebersberger U, Lo GG, Global quantification of left ventricular myocardial perfusion at dynamic CT imaging: Prognostic value. J Cardiovasc Comput Tomogr. 2017;11(1):16.

    • Search Google Scholar
    • Export Citation
  • 68.

    Vliegenthart R, De Cecco CN, Wichmann JL, Meinel FG, Pelgrim GJ, Tesche C, Dynamic CT myocardial perfusion imaging identifies early perfusion abnormalities in diabetes and hypertension: Insights from a multicenter registry. J Cardiovasc Comput Tomogr. 2016;10(4):301.

    • Search Google Scholar
    • Export Citation
  • 69.

    Tomizawa N, Fujino Y, Kamitani M, Chou S, Yamamoto K, Inoh S, Longer diabetes duration reduces myocardial blood flow in remote myocardium assessed by dynamic myocardial CT perfusion. J Diabetes Complications. 2018;32(6):609.

    • Search Google Scholar
    • Export Citation
  • 70.

    Bettencourt N, Ferreira ND, Leite D, Carvalho M, Ferreira WDS, Schuster A, CAD detection in patients with intermediate-high pre-test probability: low-dose CT delayed enhancement detects ischemic myocardial scar with moderate accuracy but does not improve performance of a stress-rest CT perfusion protocol. JACC Cardiovasc Imaging. 2013;6(10):1062.

    • Search Google Scholar
    • Export Citation
  • 71.

    Rochitte CE, George RT, Chen MY, Arbab-Zadeh A, Dewey M, Miller JM, Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography: the CORE320 study. Eur Heart J. 2014;35(17):1120.

    • Search Google Scholar
    • Export Citation
  • 72.

    Andreini D, Mushtaq S, Pontone G, Conte E, Collet C, Sonck J, CT Perfusion Versus Coronary CT Angiography in Patients With Suspected In-Stent Restenosis or CAD Progression. JACC Cardiovasc Imaging. 2020;13(3):732.

    • Search Google Scholar
    • Export Citation
  • 73.

    Delgado C, Vazquez M, Oca R, Vilar M, Trinidad C, Sanmartin M. Myocardial ischemia evaluation with dual-source computed tomography: comparison with magnetic resonance imaging. Rev Esp Cardiol (Engl Ed). 2013;66(11):864.

    • Search Google Scholar
    • Export Citation
  • 74.

    Meinel FG, De Cecco CN, Schoepf UJ, Nance JW, Jr., Silverman JR, Flowers BA, First-arterial-pass dual-energy CT for assessment of myocardial blood supply: do we need rest, stress, and delayed acquisition? Comparison with SPECT. Radiology. 2014;270(3):708.

    • Search Google Scholar
    • Export Citation
  • 75.

    Kim SM, Chang SA, Shin W, Choe YH. Dual-energy CT perfusion during pharmacologic stress for the assessment of myocardial perfusion defects using a second-generation dual-source CT: a comparison with cardiac magnetic resonance imaging. J Comput Assist Tomogr. 2014;38(1):44.

    • Search Google Scholar
    • Export Citation
  • 76.

    Ko SM, Park JH, Hwang HK, Song MG. Direct comparison of stress- and rest-dual-energy computed tomography for detection of myocardial perfusion defect. Int J Cardiovasc Imaging. 2014;30 Suppl 1:41.

    • Search Google Scholar
    • Export Citation
  • 77.

    Delgado Sanchez-Gracian C, Oca Pernas R, Trinidad Lopez C, Santos Armentia E, Vaamonde Liste A, Vazquez Caamano M, Quantitative myocardial perfusion with stress dual-energy CT: iodine concentration differences between normal and ischemic or necrotic myocardium. Initial experience. Eur Radiol. 2016;26(9):3199.

    • Search Google Scholar
    • Export Citation
  • 78.

    Nishiyama H, Tanabe Y, Kido T, Kurata A, Uetani T, Kido T, Incremental diagnostic value of whole-heart dynamic computed tomography perfusion imaging for detecting obstructive coronary artery disease. J Cardiol. 2019;73(5):425.

    • Search Google Scholar
    • Export Citation
  • 79.

    Yi Y, Xu C, Wu W, Wang Y, Li YM, Shen ZJ, Myocardial blood flow analysis of stress dynamic myocardial CT perfusion for hemodynamically significant coronary artery disease diagnosis: The clinical value of relative parameter optimization. J Cardiovasc Comput Tomogr. 2020;14(4):314.

    • Search Google Scholar
    • Export Citation
  • 80.

    Yang J, Dou G, He B, Jin Q, Chen Z, Jing J, Stress Myocardial Blood Flow Ratio by Dynamic CT Perfusion Identifies Hemodynamically Significant CAD. JACC Cardiovasc Imaging. 2020;13(4):966.

    • Search Google Scholar
    • Export Citation
  • 81.

    Alessio AM, Bindschadler M, Busey JM, Shuman WP, Caldwell JH, Branch KR. Accuracy of Myocardial Blood Flow Estimation From Dynamic Contrast-Enhanced Cardiac CT Compared With PET. Circ Cardiovasc Imaging. 2019;12(6):e008323.

    • Search Google Scholar
    • Export Citation
  • 82.

    Yi Y, Xu C, Wu W, Wang Y, Li YM, Ge YQ, Stress dynamic myocardial CT perfusion for symptomatic patients with intermediate- or high-risk of coronary artery disease: Optimization and incremental improvement between the absolute and relative myocardial blood flow analysis. J Cardiovasc Comput Tomogr. 2020;14(5):437.

    • Search Google Scholar
    • Export Citation
  • 83.

    Li Y, Dai X, Lu Z, Shen C, Zhang J. Diagnostic performance of quantitative, semi-quantitative, and visual analysis of dynamic CT myocardial perfusion imaging: a validation study with invasive fractional flow reserve. Eur Radiol. 2020.

    • Search Google Scholar
    • Export Citation