View More View Less
  • 1 Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
  • | 2 Fondazione Toscana Gabriele Monasterio, Pisa, Italy
Open access
  • [1]

    Zelt JGE, deKemp RA, Rotstein BH et al. . Nuclear Imaging of the Cardiac Sympathetic Nervous System: A Disease-Specific Interpretation in Heart Failure. JACC Cardiovascular imaging 2020;13:1036-1054.

    • Search Google Scholar
    • Export Citation
  • [2]

    Schroeder C, Jordan J. Norepinephrine uptake mechanisms in cardiovascular disease deserve our attention. Journal of cardiovascular pharmacology 2011;58:406-8.

    • Search Google Scholar
    • Export Citation
  • [3]

    Eisenhofer G. The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacology & therapeutics 2001;91:35-62.

    • Search Google Scholar
    • Export Citation
  • [4]

    Pandit-Taskar N, Modak S. Norepinephrine Transporter as a Target for Imaging and Therapy. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2017;58:39s-53s.

    • Search Google Scholar
    • Export Citation
  • [5]

    Patel AD, Iskandrian AE. MIBG imaging. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology 2002;9:75-94.

    • Search Google Scholar
    • Export Citation
  • [6]

    Kline RC, Swanson DP, Wieland DM et al. . Myocardial imaging in man with I-123 meta-iodobenzylguanidine. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 1981;22:129-32.

    • Search Google Scholar
    • Export Citation
  • [7]

    Flotats A, Carrió I, Agostini D et al. . Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. European journal of nuclear medicine and molecular imaging 2010;37:1802-12.

    • Search Google Scholar
    • Export Citation
  • [8]

    Radiation dose to patients from radiopharmaceuticals. A report of a Task Group of Committee 2 of the International Commission on Radiological Protection. Annals of the ICRP 1987;18:1-377.

    • Search Google Scholar
    • Export Citation
  • [9]

    Verberne HJ, Verschure DO, Somsen GA, van Eck-Smit BL, Jacobson AF. Vascular time-activity variation in patients undergoing 123I-MIBG myocardial scintigraphy: implications for quantification of cardiac and mediastinal uptake. European journal of nuclear medicine and molecular imaging 2011;38:1132-8.

    • Search Google Scholar
    • Export Citation
  • [10]

    Nakajima K, Matsumoto N, Kasai T, Matsuo S, Kiso K, Okuda K. Normal values and standardization of parameters in nuclear cardiology: Japanese Society of Nuclear Medicine working group database. Annals of nuclear medicine 2016;30:188-99.

    • Search Google Scholar
    • Export Citation
  • [11]

    Nakajima K, Okuda K, Matsuo S, Wakabayashi H, Kinuya S. Is (123)I-metaiodobenzylguanidine heart-to-mediastinum ratio dependent on age? From Japanese Society of Nuclear Medicine normal database. Annals of nuclear medicine 2018;32:175-181.

    • Search Google Scholar
    • Export Citation
  • [12]

    Matsuo S, Nakajima K, Yamashina S et al. . Characterization of Japanese standards for myocardial sympathetic and metabolic imaging in comparison with perfusion imaging. Annals of nuclear medicine 2009;23:517-22.

    • Search Google Scholar
    • Export Citation
  • [13]

    Jacobson AF, Travin MI. Impact of medications on mIBG uptake, with specific attention to the heart: Comprehensive review of the literature. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology 2015;22:980-93.

    • Search Google Scholar
    • Export Citation
  • [14]

    Carrió I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovascular imaging 2010;3:92-100.

    • Search Google Scholar
    • Export Citation
  • [15]

    Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. European heart journal 2008;29:1147-59.

    • Search Google Scholar
    • Export Citation
  • [16]

    Kuwabara Y, Tamaki N, Nakata T, Yamashina S, Yamazaki J. Determination of the survival rate in patients with congestive heart failure stratified by 123I-MIBG imaging: a meta-analysis from the studies performed in Japan. Annals of nuclear medicine 2011;25:101-7.

    • Search Google Scholar
    • Export Citation
  • [17]

    Merlet P, Valette H, Dubois-Randé JL et al. . Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 1992;33:471-7.

    • Search Google Scholar
    • Export Citation
  • [18]

    Ebina T, Takahashi N, Mitani I et al. . Clinical implications of cardiac (123)I-meta-iodobenzylguanidine scintigraphy and cardiac natriuretic peptides in patients with heart disease. Nuclear medicine communications 2002;23:795-801.

    • Search Google Scholar
    • Export Citation
  • [19]

    Jacobson AF, Senior R, Cerqueira MD et al. . Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. Journal of the American College of Cardiology 2010;55:2212-21.

    • Search Google Scholar
    • Export Citation
  • [20]

    Jacobson AF, Lombard J, Banerjee G, Camici PG. 123I-mIBG scintigraphy to predict risk for adverse cardiac outcomes in heart failure patients: design of two prospective multicenter international trials. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology 2009;16:113-21.

    • Search Google Scholar
    • Export Citation
  • [21]

    Piña IL, Carson P, Lindenfeld J, Archambault WT, Jacobson AF. Persistence of (123)I-mIBG Prognostic Capability in Relation to Medical Therapy in Heart Failure (from the ADMIRE-HF Trial). The American journal of cardiology 2017 ; 119:434-439.

    • Search Google Scholar
    • Export Citation
  • [22]

    Narula J, Gerson M, Thomas GS, Cerqueira MD, Jacobson AF. 123I-MIBG Imaging for Prediction of Mortality and Potentially Fatal Events in Heart Failure: The ADMIRE-HFX Study. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2015;56:1011-8.

    • Search Google Scholar
    • Export Citation
  • [23]

    Ketchum ES, Jacobson AF, Caldwell JH et al. . Selective improvement in Seattle Heart Failure Model risk stratification using iodine-123 meta-iodobenzylguanidine imaging. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology 2012;19:1007-16.

    • Search Google Scholar
    • Export Citation
  • [24]

    Koutelou M, Katsikis A, Flevari P et al. . Predictive value of cardiac autonomic indexes and MIBG washout in ICD recipients with mild to moderate heart failure. Annals of nuclear medicine 2009;23:677-84.

    • Search Google Scholar
    • Export Citation
  • [25]

    Arora R, Ferrick KJ, Nakata T et al. . I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology 2003;10:121-31.

    • Search Google Scholar
    • Export Citation
  • [26]

    Boogers MJ, Borleffs CJ, Henneman MM et al. . Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. Journal of the American College of Cardiology 2010;55:2769-77.

    • Search Google Scholar
    • Export Citation
  • [27]

    Nishisato K, Hashimoto A, Nakata T et al. . Impaired cardiac sympathetic innervation and myocardial perfusion are related to lethal arrhythmia: quantification of cardiac tracers in patients with ICDs. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2010;51:1241-9.

    • Search Google Scholar
    • Export Citation
  • [28]

    Agostini D, Belin A, Amar MH et al. . Improvement of cardiac neuronal function after carvedilol treatment in dilated cardiomyopathy: a 123I-MIBG scintigraphic study. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2000;41:845-51.

    • Search Google Scholar
    • Export Citation
  • [29]

    Cha YM, Oh J, Miyazaki C et al. . Cardiac resynchronization therapy upregulates cardiac autonomic control. Journal of cardiovascular electrophysiology 2008;19:1045-52.

    • Search Google Scholar
    • Export Citation
  • [30]

    Suwa M, Otake Y, Moriguchi A et al. . Iodine-123 metaiodobenzylguanidine myocardial scintigraphy for prediction of response to beta-blocker therapy in patients with dilated cardiomyopathy. American heart journal 1997;133:353-8.

    • Search Google Scholar
    • Export Citation
  • [31]

    Kasama S, Toyama T, Kumakura H et al. . Effects of perindopril on cardiac sympathetic nerve activity in patients with congestive heart failure: comparison with enalapril. European journal of nuclear medicine and molecular imaging 2005;32:964-71.

    • Search Google Scholar
    • Export Citation
  • [32]

    Matsui T, Tsutamoto T, Maeda K, Kusukawa J, Kinoshita M. Prognostic value of repeated 123I-metaiodobenzylguanidine imaging in patients with dilated cardiomyopathy with congestive heart failure before and after optimized treatments--comparison with neurohumoral factors. Circulation journal : official journal of the Japanese Circulation Society 2002;66:537-43.

    • Search Google Scholar
    • Export Citation
  • [33]

    Sakata K, Shirotani M, Yoshida H, Kurata C. Iodine-123 metaiodobenzylguanidine cardiac imaging to identify and localize vasospastic angina without significant coronary artery narrowing. Journal of the American College of Cardiology 1997;30:370-6.

    • Search Google Scholar
    • Export Citation
  • [34]

    Inobe Y, Kugiyama K, Miyagi H et al. . Long-lasting abnormalities in cardiac sympathetic nervous system in patients with coronary spastic angina: quantitative analysis with iodine 123 metaiodobenzylguanidine myocardial scintigraphy. American heart journal 1997;134:112-8.

    • Search Google Scholar
    • Export Citation
  • [35]

    Langer A, Freeman MR, Josse RG, Armstrong PW. Metaiodobenzylguanidine imaging in diabetes mellitus: assessment of cardiac sympathetic denervation and its relation to autonomic dysfunction and silent myocardial ischemia. Journal of the American College of Cardiology 1995;25:610-8.

    • Search Google Scholar
    • Export Citation
  • [36]

    Fallavollita JA, Canty JM Jr, . Dysinnervated but viable myocardium in ischemic heart disease. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology 2010;17:1107-15.

    • Search Google Scholar
    • Export Citation
  • [37]

    Matsunari I, Schricke U, Bengel FM et al. . Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation 2000;101:2579-85.

    • Search Google Scholar
    • Export Citation
  • [38]

    Zipes DP. Ischemic modulation of myocardial innervation. Giornale italiano di cardiologia 1992;22:615-21.

  • [39]

    Sasano T, Abraham MR, Chang KC et al. . Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. Journal of the American College of Cardiology 2008;51:2266-75.

    • Search Google Scholar
    • Export Citation
  • [40]

    Minardo JD, Tuli MM, Mock BH et al. . Scintigraphic and electrophysiological evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation 1988;78:1008-19.

    • Search Google Scholar
    • Export Citation
  • [41]

    Hartikainen J, Kuikka J, Mäntysaari M, Länsimies E, Pyörälä K. Sympathetic reinnervation after acute myocardial infarction. The American journal of cardiology 1996 ; 77:5-9.

    • Search Google Scholar
    • Export Citation
  • [42]

    Bengel FM, Barthel P, Matsunari I, Schmidt G, Schwaiger M. Kinetics of 123I-MIBG after acute myocardial infarction and reperfusion therapy. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 1999;40:904-10.

    • Search Google Scholar
    • Export Citation
  • [43]

    Imamura Y, Ando H, Mitsuoka W et al. . Iodine-123 metaiodobenzylguanidine images reflect intense myocardial adrenergic nervous activity in congestive heart failure independent of underlying cause. Journal of the American College of Cardiology 1995;26:1594-9.

    • Search Google Scholar
    • Export Citation
  • [44]

    Wakabayashi T, Nakata T, Hashimoto A et al. . Assessment of underlying etiology and cardiac sympathetic innervation to identify patients at high risk of cardiac death. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2001;42:1757-67.

    • Search Google Scholar
    • Export Citation
  • [45]

    Bax JJ, Kraft O, Buxton AE et al. . 123 I-mIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study. Circulation Cardiovascular imaging 2008;1:131-40.

    • Search Google Scholar
    • Export Citation
  • [46]

    Sazonova SI, Atabekov TA, Batalov RE et al. . Prediction of appropriate ICD therapy in patients with ischemic heart failure. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology 2020.

    • Search Google Scholar
    • Export Citation
  • [47]

    Gimelli A, Menichetti F, Soldati E et al. . Predictors of ventricular ablation's success: Viability, innervation, or mismatch? Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology 2019.

    • Search Google Scholar
    • Export Citation
  • [48]

    Ohshima S, Isobe S, Izawa H et al. . Cardiac sympathetic dysfunction correlates with abnormal myocardial contractile reserve in dilated cardiomyopathy patients. Journal of the American College of Cardiology 2005;46:2061-8.

    • Search Google Scholar
    • Export Citation
  • [49]

    Ohshima S, Isobe S, Hayashi D, Abe S, Kato K, Murohara T. Myocardial 123I-MIBG scintigraphy predicts an impairment in myocardial functional reserve during dobutamine stress in patients with idiopathic dilated cardiomyopathy. European journal of nuclear medicine and molecular imaging 2013;40:262-70.

    • Search Google Scholar
    • Export Citation
  • [50]

    Maeno M, Ishida Y, Shimonagata T et al. . [The significance of 201Tl/123I MIBG (metaiodobenzylguanidine) mismatched myocardial regions for predicting ventricular tachycardia in patients with idiopathic dilated cardiomyopathy]. Kaku igaku The Japanese journal of nuclear medicine 1993;30:1221-9.

    • Search Google Scholar
    • Export Citation
  • [51]

    Christensen TE, Bang LE, Holmvang L et al. . (123)I-MIBG Scintigraphy in the Subacute State of Takotsubo Cardiomyopathy. JACC Cardiovasc Imaging 2016;9:982-90.

    • Search Google Scholar
    • Export Citation
  • [52]

    Cimarelli S, Sauer F, Morel O, Ohlmann P, Constantinesco A, Imperiale A. Transient left ventricular dysfunction syndrome: patho-physiological bases through nuclear medicine imaging. International journal of cardiology 2010;144:212-8.

    • Search Google Scholar
    • Export Citation
  • [53]

    Madias JE. Do we need MIBG in the evaluation of patients with suspected Takotsubo syndrome? Diagnostic, prognostic, and pathophysiologic connotations. International journal of cardiology 2016;203:783-4.

    • Search Google Scholar
    • Export Citation
  • [54]

    Laursen AH, Thune JJ, Hutchings M et al. . (123) I-MIBG imaging for detection of anthracycline-induced cardiomyopathy. Clinical physiology and functional imaging 2018;38:176-185.

    • Search Google Scholar
    • Export Citation
  • [55]

    Wakasugi S, Wada A, Hasegawa Y, Nakano S, Shibata N. Detection of abnormal cardiac adrenergic neuron activity in adriamycin-induced cardiomyopathy with iodine-125-metaiodobenzylguanidine. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 1992;33:208-14.

    • Search Google Scholar
    • Export Citation
  • [56]

    Jeon TJ, Lee JD, Ha JW, Yang WI, Cho SH. Evaluation of cardiac adrenergic neuronal damage in rats with doxorubicin-induced cardiomyopathy using iodine-131 MIBG autoradiography and PGP 9.5 immunohistochemistry. European journal of nuclear medicine 2000;27:686-93.

    • Search Google Scholar
    • Export Citation
  • [57]

    Bulten BF, Verberne HJ, Bellersen L et al. . Relationship of promising methods in the detection of anthracycline-induced cardiotoxicity in breast cancer patients. Cancer chemotherapy and pharmacology 2015;76:957-67.

    • Search Google Scholar
    • Export Citation
  • [58]

    Nousiainen T, Vanninen E, Jantunen E, Remes J, Kuikka J, Hartikainen J. Anthracycline-induced cardiomyopathy: long-term effects on myocardial cell integrity, cardiac adrenergic innervation and fatty acid uptake. Clinical physiology (Oxford, England) 2001;21:123-8.

    • Search Google Scholar
    • Export Citation
  • [59]

    Cooper T, Willman VL, Jellinek M, Hanlon CR. Heart Autotransplantation: Effect on Myocardial Catecholamine and Histamine. Science (New York, NY) 1962;138:40-1.

    • Search Google Scholar
    • Export Citation
  • [60]

    De Marco T, Dae M, Yuen-Green MS et al. . Iodine-123 metaiodobenzylguanidine scintigraphic assessment of the transplanted human heart: evidence for late reinnervation. Journal of the American College of Cardiology 1995;25:927-31.

    • Search Google Scholar
    • Export Citation
  • [61]

    Norvell JE, Lower RR. Degeneration and regeneration of the nerves of the heart after transplantation. Transplantation 1973;15:337-44.

  • [62]

    Bengel FM, Ueberfuhr P, Ziegler SI, Nekolla S, Reichart B, Schwaiger M. Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation 1999;99:1866-71.

    • Search Google Scholar
    • Export Citation
  • [63]

    Uberfuhr P, Ziegler S, Schwaiblmair M, Reichart B, Schwaiger M. Incomplete sympathic reinnervation of the orthotopically transplanted human heart: observation up to 13 years after heart transplantation. Eur J Cardiothorac Surg 2000;17:161-8.

    • Search Google Scholar
    • Export Citation
  • [64]

    Bengel FM, Ueberfuhr P, Schiepel N, Nekolla SG, Reichart B, Schwaiger M. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. The New England journal of medicine 2001 ; 345:731-8.

    • Search Google Scholar
    • Export Citation
  • [65]

    Bengel FM, Ueberfuhr P, Hesse T et al. . Clinical determinants of ventricular sympathetic reinnervation after orthotopic heart transplantation. Circulation 2002;106:831-5.

    • Search Google Scholar
    • Export Citation
  • [66]

    Aimo A, Buda G, Fontana M et al. . Therapies for cardiac light chain amyloidosis: An update. Int J Cardiol 2018;271:152-160.

  • [67]

    Aimo A, Castiglione V, Borrelli C et al. . Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. Eur J Prev Cardiol 2019:2047487319870344.

    • Search Google Scholar
    • Export Citation
  • [68]

    Emdin M, Aimo A, Rapezzi C et al. . Treatment of cardiac transthyretin amyloidosis: an update. Eur Heart J 2019;40:3699-3706.

  • [69]

    Dorbala S, Ando Y, Bokhari S et al. . ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 2 of 2-Diagnostic criteria and appropriate utilization. J Nucl Cardiol 2019.

    • Search Google Scholar
    • Export Citation
  • [70]

    Piekarski E, Chequer R, Algalarrondo V et al. . Cardiac denervation evidenced by MIBG occurs earlier than amyloid deposits detection by diphosphonate scintigraphy in TTR mutation carriers. European journal of nuclear medicine and molecular imaging 2018;45:1108-1118.

    • Search Google Scholar
    • Export Citation
  • [71]

    Gimelli A, Aimo A, Vergaro G et al. . Cardiac sympathetic denervation in wild-type transthyretin amyloidosis. Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis 2020:1-7.

    • Search Google Scholar
    • Export Citation
  • [72]

    Akutsu Y, Kaneko K, Kodama Y et al. . Iodine-123 mIBG Imaging for Predicting the Development of Atrial Fibrillation. JACC Cardiovascular imaging 2011;4:78-86.

    • Search Google Scholar
    • Export Citation
  • [73]

    Arimoto T, Tada H, Igarashi M et al. . High washout rate of iodine-123-metaiodobenzylguanidine imaging predicts the outcome of catheter ablation of atrial fibrillation. Journal of cardiovascular electrophysiology 2011;22:1297-304.

    • Search Google Scholar
    • Export Citation
  • [74]

    Wenning C, Lange PS, Schülke C et al. . Pulmonary vein isolation in patients with paroxysmal atrial fibrillation is associated with regional cardiac sympathetic denervation. EJNMMI research 2013;3:81.

    • Search Google Scholar
    • Export Citation
  • [75]

    Lemery R, Ben-Haim S, Wells G, Ruddy TD. I-123-Metaiodobenzylguanidine imaging in patients with atrial fibrillation undergoing cardiac mapping and ablation of autonomic ganglia. Heart rhythm 2017;14:128-132.

    • Search Google Scholar
    • Export Citation
  • [76]

    Stirrup J, Gregg S, Baavour R et al. . Hybrid solid-state SPECT/CT left atrial innervation imaging for identification of left atrial ganglionated plexi: Technique and validation in patients with atrial fibrillation. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology 2019.

    • Search Google Scholar
    • Export Citation
  • [77]

    Teresińska A. I-123-MIBG cardiac innervation imaging in patients with atrial fibrillation. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology 2019.

    • Search Google Scholar
    • Export Citation
  • [78]

    Nagamachi S, Fujita S, Nishii R et al. . Prognostic value of cardiac I-123 metaiodobenzylguanidine imaging in patients with non-insulin-dependent diabetes mellitus. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology 2006;13:34-42.

    • Search Google Scholar
    • Export Citation
  • [79]

    Treglia G, Cason E. Diagnostic performance of myocardial innervation imaging using MIBG scintigraphy in differential diagnosis between dementia with lewy bodies and other dementias: a systematic review and a meta-analysis. J Neuroimaging 2012;22:111-7.

    • Search Google Scholar
    • Export Citation
  • [80]

    Guidelines for clinical use of cardiac nuclear medicine (JCS 2010)–digest version–. Circulation journal : official journal of the Japanese Circulation Society 2012;76:761-7.

    • Search Google Scholar
    • Export Citation