Authors:
M. Scotti
and
F. Jordán The Microsoft Research — University of Trento Centre for Computational and Systems Biology Piazza Manci 17 38123 Povo (Trento) Italy

Search for other papers by F. Jordán in
Current site
Google Scholar
PubMed
Close
Restricted access

In the last decades, many works investigated the trophic structure of communities stressing, in particular, the role played by species in food webs (e.g., their trophic level and, more recently, their centrality). There exist some encouraging applications, but few details are known about the relationships between centrality measurements and trophic levels. In addition, these studies almost refer to unweighted trophic networks, despite the acknowledged need of investigating weighted webs. Here we aim to contribute to the synthetic treatment of these complementary issues by analyzing several indices of centrality and trophic level. Studying 19 ecosystems, we ranked the nodes according to their positional importance values (based on various centrality indices) and we compared the rank order of coefficients with unweighted or weighted trophic levels. Our goal was revealing potential biases in finding high centrality nodes among basal, intermediate and top species. We found that key species occupy intermediate positions of the trophic hierarchy. In case of unweighted data, trophic levels of key nodes do not deviate from trends displayed by the whole dataset. Significant differences were observed when using weighted data. These results contradict the common belief of many ecologists that identified top-predators and charismatic megafauna as main targets of conservation policies. We discuss the potential consequences of the observed features on ecosystem dynamics.

  • Abrams, P.A., B.A. Menge, G.G. Mittelbach et al. 1996. The role of indirect effects in food webs. In: Polis, G.A. and K.O. Winemiller (eds), FooD Webs: Integration of Patterns and Dynamics . Chapman and Hall, pp. 371–395.

  • Albert, R., H. Jeong and A.-L. Barabási. 2000. Error and attack tolerance of complex networks. Nature 406: 378–381.

    Barabási A.-L. , 'Error and attack tolerance of complex networks ' (2000 ) 406 Nature : 378 -381 .

    • Search Google Scholar
  • Allesina, S., A. Bodini and C. Bondavalli. 2006. Secondary extinctions in ecological networks. Bottlenecks unveiled. Ecol. Model. 194: 150–161.

    Bondavalli C. , 'Secondary extinctions in ecological networks. Bottlenecks unveiled ' (2006 ) 194 Ecol. Model. : 150 -161 .

    • Search Google Scholar
  • Bauer, B., F. Jordán and J. Podani. 2009. Node centrality indices in food webs: rank orders versus distributions. Ecol. Complex . doi: 10.1016/ecocom.2009.11.006.

  • Bodini, A. 2000. Reconstructing trophic interactions as a tool for understanding and managing ecosystems: application to a shallow eutrophic lake. Can. J. Fish. Aquat. Sci. 57: 1999–2009.

    Bodini A. , 'Reconstructing trophic interactions as a tool for understanding and managing ecosystems: application to a shallow eutrophic lake ' (2000 ) 57 Can. J. Fish. Aquat. Sci. : 1999 -2009 .

    • Search Google Scholar
  • Bondavalli, C., A. Bodini, G. Rossetti and S. Allesina. 2006. Detecting stress at a whole ecosystem level. The case of a mountain lake: Lake Santo (Italy). Ecosystems 9: 1–56.

    Allesina S. , 'Detecting stress at a whole ecosystem level. The case of a mountain lake: Lake Santo (Italy) ' (2006 ) 9 Ecosystems : 1 -56 .

    • Search Google Scholar
  • Burns, T. P. 1989. Lindeman’s contradiction and the trophic structure of ecosystems. Ecology 70: 1355–1362.

    Burns T. P. , 'Lindeman’s contradiction and the trophic structure of ecosystems ' (1989 ) 70 Ecology : 1355 -1362 .

    • Search Google Scholar
  • Chakravarti, I.M., R.G. Laha and J. Roy. 1967. Handbook of Methods of Applied Statistics, Volume I . John Wiley and Sons, pp. 392–394.

  • Christian, R.R. and J. Luczkovich. 1999. Organizing and understanding a winter’s seagrass foodweb network through effective trophic levels. Ecol. Model. 117: 99–124.

    Luczkovich J. , 'Organizing and understanding a winter’s seagrass foodweb network through effective trophic levels ' (1999 ) 117 Ecol. Model. : 99 -124 .

    • Search Google Scholar
  • Coll, M., L.J. Shannon, C.L. Moloney, I. Palomera and S. Tudela. 2006. Comparing trophic flows and fishing impacts of a NW Mediterranean ecosystem with coastal upwelling systems by means of standardized models and indicators. Ecol. Model. 198: 53–70.

    Tudela S. , 'Comparing trophic flows and fishing impacts of a NW Mediterranean ecosystem with coastal upwelling systems by means of standardized models and indicators ' (2006 ) 198 Ecol. Model. : 53 -70 .

    • Search Google Scholar
  • Dale, V.H. and S.C. Beyeler. 2001. Challenges in the development and use of ecological indicators. Ecol. Indicators 1: 3–10.

    Beyeler S.C. , 'Challenges in the development and use of ecological indicators ' (2001 ) 1 Ecol. Indicators : 3 -10 .

    • Search Google Scholar
  • Dematté, L., C. Priami and A. Romanel. 2008. The Beta Workbench: a computational tool to study the dynamics of biological systems. Briefings in Bioinformatics 9: 437–449.

    Romanel A. , 'The Beta Workbench: a computational tool to study the dynamics of biological systems ' (2008 ) 9 Briefings in Bioinformatics : 437 -449 .

    • Search Google Scholar
  • Dunne, J.A., R.J. Williams and N.D. Martinez. 2002a. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5: 558–567.

    Martinez N.D. , 'Network structure and biodiversity loss in food webs: robustness increases with connectance ' (2002 ) 5 Ecol. Lett. : 558 -567 .

    • Search Google Scholar
  • Dunne, J.A., R.J. Williams and N.D. Martinez. 2002b. Food-web structure and network theory: the role of connectance and size. Proc. Natl. Acad. Sci. USA 99: 12917–12922.

    Martinez N.D. , 'Food-web structure and network theory: the role of connectance and size ' (2002 ) 99 Proc. Natl. Acad. Sci. USA : 12917 -12922 .

    • Search Google Scholar
  • Dunne, J.A., R.J. Williams and N.D. Martinez. 2004. Network structure and robustness of marine food webs. Mar. Ecol. Prog. Ser. 273: 291–302.

    Martinez N.D. , 'Network structure and robustness of marine food webs ' (2004 ) 273 Mar. Ecol. Prog. Ser. : 291 -302 .

    • Search Google Scholar
  • Estrada, E. 2007. Characterization of topological keystone species: Local, global and “meso-scale” centralities in food webs. Ecol. Complex. 4: 48–57.

    Estrada E. , 'Characterization of topological keystone species: Local, global and “meso-scale” centralities in food webs ' (2007 ) 4 Ecol. Complex. : 48 -57 .

    • Search Google Scholar
  • Hairston Jr., N.G. and N.G. Hairston Sr. 1993. Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. Am. Nat. 142: 379–411.

    Hairston N.G. , 'Cause-effect relationships in energy flow, trophic structure, and interspecific interactions ' (1993 ) 142 Am. Nat. : 379 -411 .

    • Search Google Scholar
  • Holt, R.D. and J.H. Lawton. 1994. The ecological consequences of shared natural enemies. Annu. Rev. Ecol. Syst. 25: 495–520.

    Lawton J.H. , 'The ecological consequences of shared natural enemies ' (1994 ) 25 Annu. Rev. Ecol. Syst. : 495 -520 .

    • Search Google Scholar
  • Jones, C.G. and J.H. Lawton (eds). 1995. Linking Species and Ecosystems , Chapman and Hall, London

    '', in Linking Species and Ecosystems , (1995 ) -.

  • Jordán, F. 2001. Seasonal changes in the positional importance of components in the trophic flow network of the Chesapeake Bay. J. Marine Syst . 27: 289–300.

    Jordán F. , 'Seasonal changes in the positional importance of components in the trophic flow network of the Chesapeake Bay ' (2001 ) 27 J. Marine Syst : 289 -300 .

    • Search Google Scholar
  • Jordán, F. 2009. Keystone species and food webs. Phil. Trans. R. Soc. B 364: 1733–1741.

    Jordán F. , 'Keystone species and food webs ' (2009 ) 364 Phil. Trans. R. Soc. B : 1733 -1741 .

    • Search Google Scholar
  • Jordán, F., Z. Benedek and J. Podani. 2007. Quantifying positional importance in food webs: a comparison of centrality indices. Ecol. Model. 205: 270–275.

    Podani J. , 'Quantifying positional importance in food webs: a comparison of centrality indices ' (2007 ) 205 Ecol. Model. : 270 -275 .

    • Search Google Scholar
  • Jordán, F., W.-C. Liu and A.J. Davis. 2006a. Topological keystone species: measures of positional importance in food webs. Oikos 112: 535–546.

    Davis A.J. , 'Topological keystone species: measures of positional importance in food webs ' (2006 ) 112 Oikos : 535 -546 .

    • Search Google Scholar
  • Jordán, F., W.-C. Liu and F.J.F. van Veen. 2003. Quantifying the importance of species and their interactions in a host-parasitoid community. Community Ecol. 4: 79–88.

    Veen F.J.F. , 'Quantifying the importance of species and their interactions in a host-parasitoid community ' (2003 ) 4 Community Ecol. : 79 -88 .

    • Search Google Scholar
  • Jordán, F., W.-C. Liu and T. Wyatt. 2005. Topological constraints on the dynamics of wasp-waist ecosystems. J. Marine Syst. 57: 250–263.

    Wyatt T. , 'Topological constraints on the dynamics of wasp-waist ecosystems ' (2005 ) 57 J. Marine Syst. : 250 -263 .

    • Search Google Scholar
  • Jordán, F. and I. Scheuring. 2002. Searching for keystones in ecological networks. Oikos 99: 607–612.

    Scheuring I. , 'Searching for keystones in ecological networks ' (2002 ) 99 Oikos : 607 -612 .

    • Search Google Scholar
  • Jordán, F. and I. Scheuring. 2004. Network ecology: topological constraints on ecosystems dynamics. Phys. Life Rev. 1: 139–172.

    Scheuring I. , 'Network ecology: topological constraints on ecosystems dynamics ' (2004 ) 1 Phys. Life Rev. : 139 -172 .

    • Search Google Scholar
  • Jordán, F., I. Scheuring, V. Vasas and J. Podani. 2006b. Architectural classes of aquatic food webs based on link distribution. Community Ecol. 7: 81–90.

    Podani J. , 'Architectural classes of aquatic food webs based on link distribution ' (2006 ) 7 Community Ecol. : 81 -90 .

    • Search Google Scholar
  • Jordán, F., A. Takács-Sánta and I. Molnár. 1999. A reliability theoretical quest for keystones. Oikos 86: 453–462.

    Molnár I. , 'A reliability theoretical quest for keystones ' (1999 ) 86 Oikos : 453 -462 .

    • Search Google Scholar
  • Kareiva, P.M. and S.A. Levin. 2003. The Importance of Species . Princeton University Press, Princeton, NJ.

    Levin S.A. , '', in The Importance of Species , (2003 ) -.

  • Levine, S. 1980. Several measures of trophic structure applicable to complex food webs. J. Theor. Biol. 83: 195–207.

    Levine S. , 'Several measures of trophic structure applicable to complex food webs ' (1980 ) 83 J. Theor. Biol. : 195 -207 .

    • Search Google Scholar
  • Lindeman, R. 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–418.

    Lindeman R. , 'The trophic-dynamic aspect of ecology ' (1942 ) 23 Ecology : 399 -418 .

  • Livi, C.M., F. Jordán, P. Lecca and T.A. Okey. Identifying key species in ecosystems with stochastic sensitivity analysis. Submitted .

  • Mann, H.B. and D.R. Whitney. 1947. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18: 50–60.

    Whitney D.R. , 'On a test of whether one of two random variables is stochastically larger than the other ' (1947 ) 18 Annals of Mathematical Statistics : 50 -60 .

    • Search Google Scholar
  • Margalef, R. 1991. Networks in ecology. In: Higashi, M. and Burns, T.P. (eds), Theoretical Studies of Ecosystems — The Network Perspective . Cambridge Univ. Press, pp. 41–57.

  • Menge, B.A. 1995. Indirect effects in marine rocky intertidal interaction webs: patterns and importance. Ecol. Monogr. 65: 21–74.

    Menge B.A. , 'Indirect effects in marine rocky intertidal interaction webs: patterns and importance ' (1995 ) 65 Ecol. Monogr. : 21 -74 .

    • Search Google Scholar
  • Mills, L.S., M.L. Soulé and D.F. Doak. 1993. The keystone-species concept in ecology and conservation. Bioscience 43: 219–224.

    Doak D.F. , 'The keystone-species concept in ecology and conservation ' (1993 ) 43 Bioscience : 219 -224 .

    • Search Google Scholar
  • Montoya, J.M. and R.V. Solé. 2002. Small world patterns in food webs. J. Theor. Biol. 214: 405–412.

    Solé R.V. , 'Small world patterns in food webs ' (2002 ) 214 J. Theor. Biol. : 405 -412 .

    • Search Google Scholar
  • Odum, W.E. and E.J. Heald. 1975. The detritus-based food web of an estuarine mangrove community. In: Cronin, L.E. (ed.), Estuarine Research , vol. 1. Academic Press, New York, pp. 265–286.

    Heald E.J. , '', in Estuarine Research, vol. 1 , (1975 ) -.

  • Paine, R.T. 1969. A note on trophic complexity and community stability. Am. Nat. 103: 91–93.

    Paine R.T. , 'A note on trophic complexity and community stability ' (1969 ) 103 Am. Nat. : 91 -93 .

    • Search Google Scholar
  • Pauly, D., V. Christensen, J. Dalsgaard, R. Froese and F. Torres Jr. 1998. Fishing down marine food webs. Science 279: 860–863.

    Torres F. , 'Fishing down marine food webs ' (1998 ) 279 Science : 860 -863 .

  • Pimm, S.L. 1980. Properties of food webs. Ecology 61: 219–225.

    Pimm S.L. , 'Properties of food webs ' (1980 ) 61 Ecology : 219 -225 .

  • Pimm, S.L. 1982. Food Webs . Chapman & Hall, London.

    Pimm S.L. , '', in Food Webs , (1982 ) -.

  • Post, D.M. 2002. The long and short of food-chain length. Trends Ecol. Evol . 17: 269–277.

    Post D.M. , 'The long and short of food-chain length ' (2002 ) 17 Trends Ecol. Evol : 269 -277 .

    • Search Google Scholar
  • Priami, C. 2009. Algorithmic systems biology. Communications of ACM 52: 80–89.

    Priami C. , 'Algorithmic systems biology ' (2009 ) 52 Communications of ACM : 80 -89 .

  • Scotti, M., S. Allesina, C. Bondavalli, A. Bodini and L.G. Abarca-Arenas. 2006. Effective trophic positions in ecological acyclic networks. Ecol. Model. 198: 495–505.

    Abarca-Arenas L.G. , 'Effective trophic positions in ecological acyclic networks ' (2006 ) 198 Ecol. Model. : 495 -505 .

    • Search Google Scholar
  • Scotti, M., J. Podani and F. Jordán. 2007. Weighting, scale dependence and indirect effects in ecological networks: A comparative study. Ecol. Complex. 4: 148–159.

    Jordán F. , 'Weighting, scale dependence and indirect effects in ecological networks: A comparative study ' (2007 ) 4 Ecol. Complex. : 148 -159 .

    • Search Google Scholar
  • Simberloff, D. 1998. Flagships, umbrellas, and keystones: is single-species management passé in the landscape area? Biol. Conserv. 83: 247–257.

    Simberloff D. , 'Flagships, umbrellas, and keystones: is single-species management passé in the landscape area? ' (1998 ) 83 Biol. Conserv. : 247 -257 .

    • Search Google Scholar
  • Solé, R.V. and J.M. Montoya. 2001. Complexity and fragility in ecological networks. Proc. R. Soc. B 268: 2039–2045.

    Montoya J.M. , 'Complexity and fragility in ecological networks ' (2001 ) 268 Proc. R. Soc. B : 2039 -2045 .

    • Search Google Scholar
  • Thode Jr., H.C. 2002. Testing for Normality . Marcel Dekker, New York.

    Thode H.C. , '', in Testing for Normality , (2002 ) -.

  • Ulanowicz, R.E. 1986. Growth and Development — Ecosystems Phenomenology . Springer, New York.

    Ulanowicz R.E. , '', in Growth and Development — Ecosystems Phenomenology , (1986 ) -.

  • Ulanowicz, R.E. and W.M. Kemp. 1979. Toward canonical trophic aggregations. Am. Nat. 114: 871–883.

    Kemp W.M. , 'Toward canonical trophic aggregations ' (1979 ) 114 Am. Nat. : 871 -883 .

  • Valentini, R. and F. Jordán. 2010. CoSBiLab Graph: the network analysis module of CoSBiLab. Environmental Modelling and Software 25: 886–888.

    Jordán F. , 'CoSBiLab Graph: the network analysis module of CoSBiLab ' (2010 ) 25 Environmental Modelling and Software : 886 -888 .

    • Search Google Scholar
  • Vasas, V. and F. Jordán. 2006. Topological keystone species in ecological interaction networks: considering link quality and nontrophic effects. Ecol. Model. 196: 365–378.

    Jordán F. , 'Topological keystone species in ecological interaction networks: considering link quality and nontrophic effects ' (2006 ) 196 Ecol. Model. : 365 -378 .

    • Search Google Scholar
  • Wasserman, S. and K. Faust. 1994. Social Network Analysis . Cambridge University Press, Cambridge.

    Faust K. , '', in Social Network Analysis , (1994 ) -.

  • Watts, D.J. and S.H. Strogatz. 1998. Collective dynamics of ’smallworld’ networks. Nature 393: 440–442.

    Strogatz S.H. , 'Collective dynamics of ’smallworld’ networks ' (1998 ) 393 Nature : 440 -442 .

    • Search Google Scholar
  • Williams, R.J. and N.D. Martinez. 2004. Limits to trophic levels and omnivory in complex food webs: theory and data. Am. Nat. 163: 458–68.

    Martinez N.D. , 'Limits to trophic levels and omnivory in complex food webs: theory and data ' (2004 ) 163 Am. Nat. : 458 -68 .

    • Search Google Scholar
  • Wulff, F. and R.E. Ulanowicz. 1989. A comparative anatomy of the Baltic Sea and Chesapeake Bay ecosystems. In: Wulff, F., Field, J. G., Mann, K. H. (eds.), Network Analysis in Marine Ecology . Coastal and Estuarine Studies Series. Springer, Berlin, pp. 232–256.

    Ulanowicz R.E. , '', in Network Analysis in Marine Ecology , (1989 ) -.

  • Collapse
  • Expand
  • Top

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Community Ecology
Language English
Size A4
Year of
Foundation
2000
Volumes
per Year
1
Issues
per Year
3
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2022 6 0 0
Apr 2022 1 0 0
May 2022 7 0 0
Jun 2022 3 0 0
Jul 2022 12 0 0
Aug 2022 0 0 0
Sep 2022 0 0 0