View More View Less
  • 1 Institute of Ecology and Botany, Alkotmány u. 2-4, H-2163 Vácrátót, Hungary
  • 2 GINOP Sustainable Ecosystems Group, Klebelsberg Kuno u. 3, H-8237 Tihany, Hungary
  • 3 Corvinus University of Budapest, Ménesi út 44, H-1118 Budapest, Hungary
Restricted access

Aboveground plant biomass is one of the most important features of ecosystems, and it is widely used in ecosystem research. Non-destructive biomass estimation methods provide an important toolkit, because the destructive harvesting method is in many cases not feasible. However, only few studies have compared the accuracy of these methods in grassland communities to date. We studied the accuracy of three widely used methods for estimation of aboveground biomass: the visual cover estimation method, the point intercept method, and field spectroscopy. We applied them in three independent series of field samplings in semi-arid sand grasslands in Central Hungary. For each sampling method, we applied linear regression to assess the strength of the relationship between biomass proxies and actual aboveground biomass, and used coefficient of determination to evaluate accuracy. We found no evidence that the visual cover estimation, which is generally considered as a subjective method, was less accurate than point intercept method or field spectroscopy in estimating biomass. Based on our three datasets, we found that accuracy was lower for the point intercept method compared to the other two methods, while field spectroscopy and visual cover estimation were similar to each other in the semi-arid sand grassland community. We conclude that visual cover estimation can be as accurate for estimating aboveground biomass as other approaches, thus the choice amongst the methods should be based on additional pros and cons associated with each of the method and related to the specific research objective.

  • Asrar, G., Kanemasu, E.T., Miller, G.P. and Weiser, R.L. 1986. Light interception and leaf area estimates from measurements of grass canopy reflectance. IEEE Trans. Geosci. Remote Sens. GE-24: 7682.

    • Search Google Scholar
    • Export Citation
  • Bråthen, K.A. and Hagberg, O. 2004. More efficient estimation of plant biomass. J. Veg. Sci. 15: 653660.

  • Braun-Blanquet, J. 1932. Plant Sociology. The Study of Plant Communities. McGraw-Hill, New York.

  • Byrne, K.M., Lauenroth, W.K. and Adler, P.B. 2013. Contrasting effects of precipitation manipulations on production in two sites within the Central Grassland Region, USA. Ecosystems 16: 10391051.

    • Search Google Scholar
    • Export Citation
  • Byrne, K.M., Lauenroth, W.K., Adler, P.B. and Byrne, C.M., 2011. Estimating aboveground net primary production in grasslands: A comparison of nondestructive methods. Rangel. Ecol. Manag. 64: 498505.

    • Search Google Scholar
    • Export Citation
  • Canfield, R.H. 1941. Application of the line interception method in sampling range vegetation. J. For. 39: 388394.

  • Catchpole, W.R. and Wheeler, C.J. 1992. Estimating plant biomass: A review of techniques. Aust. J. Ecol. 17: 121131.

  • Damgaard, C., Merlin, A., Mesléard, F. and Bonis, A. 2011. The demography of space occupancy: measuring plant colonization and survival probabilities using repeated pin-point measurements. Methods Ecol. Evol. 2: 110115.

    • Search Google Scholar
    • Export Citation
  • Döbert, T.F., Webber, B.L., Sugau, J.B., Dickinson, K.J.M. and Didham, R.K. 2015. Can leaf area index and biomass be estimated from Braun-Blanquet cover scores in tropical forests? J. Veg. Sci. 26: 10431053.

    • Search Google Scholar
    • Export Citation
  • Faraway, J.J. 2005. Linear Models with R. CRC Press, Boca Raton.

  • Fay, P.A., Blair, J.M., Smith, M.D., Nippert, J.B., Carlisle, J.D. and Knapp, A.K. 2011. Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences 8: 30533068.

    • Search Google Scholar
    • Export Citation
  • Filella, I., Peñuelas, J., Llorens, L. and Estiarte, M. 2004. Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sens. Environ. 90: 308318.

    • Search Google Scholar
    • Export Citation
  • Frank, D.A. and McNaughton, S.J. 1990. Aboveground biomass estimation with the canopy intercept method: A plant growth form caveat. Oikos 57: 5760.

    • Search Google Scholar
    • Export Citation
  • Gamon, J.A., Field, C.B., Goulden, M.L., Griffin, K.L., Hartley, A.E., Joel, G., Peñuelas, J. and Valentini, R. 1995. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 5: 2841.

    • Search Google Scholar
    • Export Citation
  • Gilgen, A.K. and Buchmann, N. 2009. Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation. Biogeosciences 6: 25252539.

    • Search Google Scholar
    • Export Citation
  • Godínez-Alvarez, H., Herrick, J.E., Mattocks, M., Toledo, D. and Van Zee, J. 2009. Comparison of three vegetation monitoring methods: Their relative utility for ecological assessment and monitoring. Ecol. Indic. 9: 10011008.

    • Search Google Scholar
    • Export Citation
  • Goodall, D. 1952. Some considerations in the use of point quadrats for the analysis of vegetation. Aust. J. Biol. Sci. 5: 141.

  • Greig-Smith, P. 1983. Quantitative Plant Ecology. University of California Press, Berkeley.

  • Grime, J.P., Fridley, J.D., Askew, A.P., Thompson, K., Hodgson, J.G. and Bennett, C.R. 2008. Long-term resistance to simulated climate change in an infertile grassland. Proc. Natl. Acad. Sci. 105: 1002810032.

    • Search Google Scholar
    • Export Citation
  • Gu, Y., Wylie, B.K., Howard, D.M., Phuyal, K.P. and Ji, L. 2013. NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA. Ecol. Indic. 30: 16.

    • Search Google Scholar
    • Export Citation
  • Hahn, I. and Scheuring, I. 2003. The effect of measurement scales on estimating vegetation cover: a computer-assisted experiment. Community Ecol. 4: 2933.

    • Search Google Scholar
    • Export Citation
  • Jobbágy, E.G., Sala, O.E. and Paruelo, J.M. 2002. Patterns and controls of primary production in the Patagonian steppe: a remote sensing approach. Ecology 83: 307319.

    • Search Google Scholar
    • Export Citation
  • Jonasson, S. 1988. Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52: 101106.

  • Klimeš, L. 2003. Scale-dependent variation in visual estimates of grassland plant cover. J. Veg. Sci. 14: 815821.

  • Knapp, A., Carroll, C.W., Denton, E., La Pierre, K., Collins, S. and Smith, M. 2015. Differential sensitivity to regional-scale drought in six central US grasslands. Oecologia 177: 949957.

    • Search Google Scholar
    • Export Citation
  • Kongstad, J., Schmidt, I.K., Riis-Nielsen, T., Arndal, M.F., Mikkelsen, T.N. and Beier, C. 2012. High resilience in heathland plants to changes in temperature, drought, and CO2 in combination: Results from the CLIMAITE experiment. Ecosystems 15: 269283.

    • Search Google Scholar
    • Export Citation
  • Kovács-Láng, E., Kröel-Dulay, G., Kertész, M., Fekete, G., Mika, J., Dobi-Wantuch, I., Rédei, T., Rajkai, K., Hahn, I. and Bartha, S. 2000. Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30: 385408.

    • Search Google Scholar
    • Export Citation
  • Kovács-Láng, E., Molnár, E., Kröel-Dulay, G. and Barabás, S. 2008. The KISKUN LTER: Long-term ecological research in the Kiskunság, Hungary. Institute of Ecology and Botany, Hungarian Academy of Sciences, Vácrátót.

    • Search Google Scholar
    • Export Citation
  • Kröel-Dulay, G., Ransijn, J., Schmidt, I.K., Beier, C., de Angelis, P., de Dato, G., Dukes, J.S., Emmett, B., Estiarte, M., Garadnai, J., Kongstad, J., Kovács-Láng, E., Larsen, K.S., Liberati, D., Ogaya, R., Riis-Nielsen, T., Smith, A.R., Sowerby, A., Tietema, A. and Penuelas, J. 2015. Increased sensitivity to climate change in disturbed ecosystems. Nat. Commun. 6: 6682 doi:10.1038/ncomms7682.

    • Search Google Scholar
    • Export Citation
  • Milton, E.J., Schaepman, M.E., Anderson, K., Kneubühler, M. and Fox, N. 2009. Progress in field spectroscopy. Remote Sens. Environ., Imaging Spectroscopy Special Issue 113, Supplement 1: S92S109.

    • Search Google Scholar
    • Export Citation
  • Molnár, Z. 2003. Sanddunes in Hungary (Kiskunság). TermészetBÚVÁR Alapítvány Kiadó, Budapest.

  • Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni, R.B. and Running, S.W. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300: 15601563.

    • Search Google Scholar
    • Export Citation
  • Paruelo, J.M., Epstein, H.E., Lauenroth, W.K. and Burke, I.C. 1997. ANPP estimates from NDVI for the Central Grassland Region of the United States. Ecology 78: 953958.

    • Search Google Scholar
    • Export Citation
  • Pearson, R.L., Miller, L.D. and Tucker, C.J. 1976. Hand-held spectral radiometer to estimate gramineous biomass. Appl. Opt. 15: 416418.

    • Search Google Scholar
    • Export Citation
  • Peet, R.K., Wentworth, T.R. and White, P.S. 1998. A flexible, multipurpose method for recording vegetation composition and structure. Castanea 63: 262274.

    • Search Google Scholar
    • Export Citation
  • Peñuelas, J., Prieto, P., Beier, C., Cesaraccio, C., de ANGELIS, P., de DATO, G., Emmett, B.A., Estiarte, M., Garadnai, J., Gorissen, A., Láng, E.K., Kröel-Dulay, G., Llorens, L., Pellizzaro, G., Riis-Nielsen, T., Schmidt, I.K., Sirca, C., Sowerby, A., Spano, D. and Tietema, A. 2007. Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought: reductions in primary productivity in the heat and drought year of 2003. Glob. Change Biol. 13: 25632581.

    • Search Google Scholar
    • Export Citation
  • R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

    • Search Google Scholar
    • Export Citation
  • Redjadj, C., Duparc, A., Lavorel, S., Grigulis, K., Bonenfant, C., Maillard, D., Saïd, S. and Loison, A. 2012. Estimating herbaceous plant biomass in mountain grasslands: a comparative study using three different methods. Alp. Bot. 122: 5763.

    • Search Google Scholar
    • Export Citation
  • Röttgermann, M., Steinlein, T., Beyschlag, W. and Dietz, H. 2000. Linear relationships between aboveground biomass and plant cover in low open herbaceous vegetation. J. Veg. Sci. 11: 145148.

    • Search Google Scholar
    • Export Citation
  • Roujean, J.-L. and Breon, F.-M. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 51: 375384.

    • Search Google Scholar
    • Export Citation
  • Rouse, J.W., Haas, R.H., Deering, D.W., Schell, J.A. and Harlan, J.C. 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFCT Type III Final Report, Greenbelt, MD, USA.

    • Search Google Scholar
    • Export Citation
  • Sala, O.E. and Austin, A.T. 2000. Methods of estimating aboveground net primary productivity. In: Sala, O.E., Jackson, R.B., Mooney, H.A. and Howarth, R.W. (eds.), Methods in Ecosystem Science. Springer New York, pp. 3143.

    • Search Google Scholar
    • Export Citation
  • Sala, O.E., Parton, W.J., Joyce, L.A. and Lauenroth, W.K. 1988. Primary production of the Central Grassland Region of the United States. Ecology 69: 4045.

    • Search Google Scholar
    • Export Citation
  • Scurlock, J.M.O., Johnson, K. and Olson, R.J. 2002. Estimating net primary productivity from grassland biomass dynamics measurements. Glob. Change Biol. 8: 736753.

    • Search Google Scholar
    • Export Citation
  • Sykes, J.M., Horrill, A.D. and Mountford, M.D. 1983. Use of visual cover assessments as quantitative estimators of some British woodland taxa. J. Ecol. 71: 437450.

    • Search Google Scholar
    • Export Citation
  • The Plant List, 2010. Version 1. Published on the Internet; http://www.theplantlist.org/ (accessed 1st January).

  • Tucker, C.J. and Sellers, P.J. 1986. Satellite remote sensing of primary production. Int. J. Remote Sens. 7: 13951416.

  • Whitbeck, M. and Grace, J.B. 2006. Evaluation of non-destructive methods for estimating biomass in marshes of the upper Texas, USA coast. Wetlands 26: 278282.

    • Search Google Scholar
    • Export Citation
  • Wilson, J.B. 2011. Cover plus: ways of measuring plant canopies and the terms used for them. J. Veg. Sci. 22: 197206.

  • Wintle, B.C., Fidler, F., Vesk, P.A.L. Moore, J. 2013. Improving visual estimation through active feedback. Methods Ecol. Evol. 4: 5362.

    • Search Google Scholar
    • Export Citation

Click HERE for submission guidelines.


Manuscript submission: COMEC Manuscript Submission

 

  • Impact Factor (2019): 0.851
  • Scimago Journal Rank (2019): 0.376
  • SJR Hirsch-Index (2019): 28
  • SJR Quartile Score (2019): Q3 Ecology
  • SJR Quartile Score (2019): Q3 Ecology, Evolution, Behavior and Systematics
  • Impact Factor (2018): 0.746
  • Scimago Journal Rank (2018): 0.428
  • SJR Hirsch-Index (2018): 25
  • SJR Quartile Score (2018): Q2 Ecology
  • SJR Quartile Score (2018): Q3 Ecology, Evolution, Behavior and Systematics

Language: English

Founded in 2000
Publication: One volume of two issues annually
Publication Programme: 2020. Vol. 21.
Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Biology & Environmental Sciences
  • Elsevier/Geo Abstracts
  • Science Citation Index Expanded
  • SCOPUS
  • Zoological Abstracts

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Podani, János

Editor(s)-in-Chief: Jordán, Ferenc

Honorary Editor(s): Orlóci, László

Editorial Board

  • Madhur Anand, CAN (forest ecology, computational ecology, and ecological complexity)
  • S. Bagella, ITA (temporal dynamics, including succession, community level patterns of species richness and diversity, experimental studies of plant, animal and microbial communities, plant communities of the Mediterranean)
  • P. Batáry, HUN (landscape ecology, agroecology, ecosystem services)
  • P. A. V. Borges, PRT (community level patterns of species richness and diversity, sampling in theory and practice)
  • A. Davis, GER (supervised learning, multitrophic interactions, food webs, multivariate analysis, ecological statistics, experimental design, fractals, parasitoids, species diversity, community assembly, ticks, biodiversity, climate change, biological networks, cranes, olfactometry, evolution)
  • Z. Elek, HUN (insect ecology, invertebrate conservation, population dynamics, especially of long-term field studies, insect sampling)
  • T. Kalapos, HUN (community level plant ecophysiology, grassland ecology, vegetation-soil relationship)
  • G. M. Kovács, HUN (microbial ecology, plant-fungus interactions, mycorrhizas)
  • W. C. Liu,TWN (community-based ecological theory and modelling issues, temporal dynamics, including succession, trophic interactions, competition, species response to the environment)
  • L. Mucina, AUS (vegetation survey, syntaxonomy, evolutionary community ecology, assembly rules, global vegetation patterns, mediterranean ecology)
  • P. Ódor, HUN (plant communities, bryophyte ecology, numerical methods)
  • F. Rigal, FRA (island biogeography, macroecology, functional diversity, arthropod ecology)
  • D. Rocchini, ITA (biodiversity, multiple scales, spatial scales, species distribution, spatial ecology, remote sensing, ecological informatics, computational ecology)
  • F. Samu, HUN (landscape ecology, biological control, generalist predators, spiders, arthropods, conservation biology, sampling methods)
  • U. Scharler, ZAF (ecological networks, food webs, estuaries, marine, mangroves, stoichiometry, temperate, subtropical)
  • D. Schmera, HUN (aquatic communities, functional diversity, ecological theory)
  • M. Scotti, GER (community-based ecological theory and modelling issues, trophic interactions, competition, species response to the environment, ecological networks)
  • B. Tóthmérész, HUN (biodiversity, soil zoology, spatial models, macroecology, ecological modeling)
  • S. Wollrab, GER (aquatic ecology, food web dynamics, plankton ecology, predator-prey interactions)

 

Advisory Board

  • S. Bartha, HUN
  • S.L. Collins, USA
  • T. Czárán, HUN
  • E. Feoli, ITA
  • N. Kenkel, CAN
  • J. Lepš, CZE
  • S. Mazzoleni, ITA
  • Cs. Moskát, HUN
  • B. Oborny, HUN
  • M.W. Palmer, USA
  • G.P. Patil, USA
  • V. de Patta Pillar, BRA
  • C. Ricotta, ITA
  • Á. Szentesi, HUN

PODANI, JÁNOS
E-mail: podani@ludens.elte.hu


JORDÁN, FERENC
E-mail: jordan.ferenc@gmail.com