View More View Less
  • 1 MTA Centre for Ecological Research, Klebelsberg Kunó u. 3, H-8237 Tihany, Hungary
  • 2 ELTE Eötvös Loránd University, Pázmány Péter sétány1/c, H-1117 Budapest, Hungary
Open access

Abstract

Functional responses measure the trophic interactions between species, taking into account the density and behavior of the interacting species. In predator-prey interactions, the prey preference of the predator and the antipredator behavior of the prey together determine the feeding rate of the predator and the survival rate of the prey. Consequently, the behavior dependent functional responses make it possible to establish dynamic ecological models providing insight, among others, into the coexistence of predator and prey species and the efficiency of agents in biological pest control. In this paper the derivation methods of functional responses are reviewed. Basically, there are three classes of such methods: heuristic, stochastic and deterministic ones. All of them can take account of the behavior of the predator and prey. There are three main stochastic methods for the derivation of functional responses: renewal theory, Markov chain and the Wald equality-based method. All these methods assume that during the foraging process the prey densities do not change, which provides a mathematical basis for heuristic derivation. There are two deterministic methods using differential equations. The first one also assumes that during the foraging process the prey densities do not change, while the second one does not use that assumption. These derivation methods are appropriate to handle the behavior dependent functional responses, which is essential in the derivation of ecological games, when the payoff of prey and predator depends on the strategies of the prey and predator at the same time.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abrams, P.A. 2014. Why ratio dependence is (still) a bad model of predation. Biol. Rev. 90: 794814.

  • Abrams, P.A. and L.R. Ginzburg. 2000. The nature of predation: prey dependent, ratio dependent or neither?, TREE 15: 337341.

  • Abrams, P.A., H. Matsuda and Y. Harada. 1993. Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits. Evol. Ecol. 7: 465487.

    • Search Google Scholar
    • Export Citation
  • Aljetlawi, A.A., E. Sparrevik and K. Leonardsson. 2004. Preypredator size-dependent functional response: derivation and rescaling to the real world. J. Anim. Ecol. 73: 239252.

    • Search Google Scholar
    • Export Citation
  • Andersson, M. 1981. On optimal predator search. Theor. Pop. Biol. 19: 5886.

  • Andrews, J.F. 1968. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10: 707723.

    • Search Google Scholar
    • Export Citation
  • Arditi, R. and L.R. Ginzburg. 1989. Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139: 311326.

  • Arditi, R. and L.R. Ginzburg. 2012. How Species Interact: Altering the Standard View on Trophic Ecology. Oxford Univ. Press, New York

  • Arditi, R., L.R. Ginzburg and H.R. Akcakaya. 1991. Functional responses and heterogeneities: an experimental test with cladocerans. Oikos 60: 6975.

    • Search Google Scholar
    • Export Citation
  • Auger, P., R.B. de la Parra, S. Moran and E. Sánchez. 2002. A predator-prey model with predators using hawk and dove tactics. Math. Biosci. 177178: 185200.

    • Search Google Scholar
    • Export Citation
  • Auger, P., R.B. de la Parra, S. Morand and E. Sánchez. 2002. A predator-prey model with predators using hawk and dove tactics. Math. Biosci. 177: 185200.

    • Search Google Scholar
    • Export Citation
  • Baker, D.J., R.A. Stillman, B.M Smith. J.M. Bullock and K.J. Norris. 2010. Vigilance and the functional response of granivorous foragers. Funct. Ecol. 24: 12811290.

    • Search Google Scholar
    • Export Citation
  • Barta, Z. and L.A. Giraldeau. 2000. Daily patterns of optimal producer and scrounger use under predation hazard: A state-dependent dynamic game analysis. Am. Nat. 155: 570582.

    • Search Google Scholar
    • Export Citation
  • Baudrot, V., A. Perasso, C. Fritsch, P. Giraudoux and F. Raoul. 2016. The adaptation of generalist predators’ diet in a multi-prey context: insights from new functional responses. Ecology 97: 18321841.

    • Search Google Scholar
    • Export Citation
  • Beddington, J.R. 1975. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44: 331340.

    • Search Google Scholar
    • Export Citation
  • Billiard, S., V. Bansaye and J.R. Chazottes. 2018. Rejuvenating functional responses with renewal theory. J. Roy. Soc. Interface 15: 146.

  • Boon, B. and H. Landelout. 1962. Kinetics of nitrite oxidation by nitrobacter winogradskyi. Biochem. J. 85: 440447.

  • Broom, M., M.L. Crowe, M.R. Fitzgerald and J. Rychtáf. 2010. The stochastic modelling of kleptoparasitism using a Markov process. J. Theor. Biol. 264: 266272.

    • Search Google Scholar
    • Export Citation
  • Broom M. and V. Křivan. 2018. Biology and evolutionary games. In: T. Basar and G. Zaccour (eds), Handbook of Dynamic Game Theory. Springer, Cham. pp. 10391077.

    • Search Google Scholar
    • Export Citation
  • Broom, M. and J. Rychtar. 2013. Game-theoretical Models in Biology. CRC, Boca Raton, FL.

  • Brown, J.S. 1999. Vigilance, patch use and habitat selection: Foraging under predation risk. Evol. Ecol. Res. 1: 4971.

  • Brown, J.S. J.W. Laundré and M. Gurung. 1999. The ecology of fear: Optimal foraging, game theory, and trophic interactions. J. Mammal. 80: 385399.

    • Search Google Scholar
    • Export Citation
  • Brown, J.S. and T.L. Vincent. 1992. Organization of predator-prey communities as an evolutionary game. Evolution 46: 12691283.

  • Cabello, T., M. Gámez and Z. Varga, 2007. An improvement of the Holling type III functional response in entomophagous model. J. Biol. Syst. 15: 515524.

    • Search Google Scholar
    • Export Citation
  • Casas, J., W.S.C. Gurney, R. Nisbet and O. Roux. 1993. A probabilistic model for the functional response of a parasitoid at the behavioural time-scale. J. Anim. Ecol. 62: 194204.

    • Search Google Scholar
    • Export Citation
  • Charnov, E.L. 1976. Optimal foraging: attack strategy of a mantid. Am. Nat. 110: 141151.

  • Colombo, M. 2013. Determinants of winter kill rates of wolves in Scandinavia. Second cycle, A2E. Umea: SLU, Dept. of Wildlife, Fish and Environmental Studies

    • Search Google Scholar
    • Export Citation
  • Cosner, C., D.L. DeAngelis, J.S. Ault and D.B. Olson. 1999. Effects of spatial grouping on the functional response of predators. Theor. Pop. Biol. 56: 6575.

    • Search Google Scholar
    • Export Citation
  • Cressman, R. and J. Garay. 2009. A predator-prey refuge system: Evolutionary stability in ecological systems. Theor. Pop. Biol. 76: 248257.

    • Search Google Scholar
    • Export Citation
  • Cressman, R. and J. Garay. 2011. The effects of opportunistic and intentional predators on the herding behavior of prey. Ecology 92: 432440.

    • Search Google Scholar
    • Export Citation
  • Cressman, R. and V. Krivan. 2019. Bimatrix games that include interaction times alter the evolutionary outcome: The owner-intruder game. J. Theor. Biol. 460: 262273.

    • Search Google Scholar
    • Export Citation
  • Cressman, R., V. Krivan and J. Garay. 2004. Ideal free distributions, evolutionary games, and population dynamics in multiple-species environments. Am. Nat. 164: 473489.

    • Search Google Scholar
    • Export Citation
  • Cressman R , V. Krivan, J.S. Brown and J. Garay. 2014. Gametheoretic methods for functional response and optimal foraging behavior. PLoS ONE 9 (2), e88773

    • Search Google Scholar
    • Export Citation
  • Dawkins, M. 1971. Shifts of ‘attention’ in chicks during feeding. Anim. Behav. 19: 575582.

  • Dawes, J.H.P. and M.O. Souza. 2013. A derivation of Holling's type I, II and III functional responses in predator-prey systems. J. Theor. Biol. 327: 1122.

    • Search Google Scholar
    • Export Citation
  • DeAngelis, D.L., R. A. Goldstein and R.V. O'Neill. 1975. A Model for tropic interaction. Ecology 56: 881892.

  • Dercole, F. 2016. The ecology of asexual pairwise interactions: the generalized law of mass action. Theor. Ecol. 9: 299321.

  • Edwards, V.H. 1970. Influence of high substrate concentrations on microbial kinetics, Biotechnol. Bioeng. 12: 679712.

  • Erichsen, J.T., J.R. Krebs and A.I. Houston. 1980. Optimal foraging and cryptic prey. J. Anim. Ecol. 49: 271276.

  • Eshel, I. 1978. On a prey-predator nonzero-sum game and the evolution of gregarious behavior of evasive prey. Am. Nat. 112: 787795.

  • Fenlon, J.S. and M.J. Faddy. 2006. Modelling predation in functional response. Ecol. Model. 198: 154162.

  • Fernandez-Maldonado, F.J., J.R. Gallego, M. Gamez, Z. Varga, J. Garay and T. Cabello 2017. Cannibalism: Do risks of fighting and reprisal reduce predatory rates?, Community Ecol. 18: 8796.

    • Search Google Scholar
    • Export Citation
  • Fishman, M.A. and L. Hadany. 2010. Plant-pollinator population dynamics. Theor. Pop. Biol. 78: 270277.

  • Fretwell, D.S. and H.L. Lucas. 1970. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheoretica 19: 1632.

    • Search Google Scholar
    • Export Citation
  • Fryxell, J.M., A. Mosser, A.R.E. Sinclair and C. Packer. 2007. Group formation stabilizes predator-prey dynamics. Nature 449: 10411043.

  • Gagniuc, P.A. 2017. Markov Chains: From Theory to Implementation and Experimentation. Wiley, Hoboken.

  • Garay, J., R. Cressman, F. Xu, Z. Varga and T. Cabello. 2015b. Optimal forager against Ideal Free Distributed prey. Am. Nat. 186: 111122.

    • Search Google Scholar
    • Export Citation
  • Garay, J., R. Cressman and Z. Varga, 2003. Optimal behaviour of honey bees based on imitation at fixed densities. Community Ecol. 4: 219224.

    • Search Google Scholar
    • Export Citation
  • Garay J. , V. Császár and T.F. Móri 2016. Evolutionary stability for matrix games under time constraints. J. Theor. Biol. 415: 112.

  • Garay, J. and F.T. Móri, 2010. When is the opportunism remunerative?, Community Ecol. 11: 160170.

  • Garay, J., Z. Varga, T. Cabello and M. Gamez. 2012. Optimal nutrient foraging strategy of an omnivore: Liebig's law determining numerical response. J. Theor. Biol. 310: 3142.

    • Search Google Scholar
    • Export Citation
  • Garay J. , Z. Varga, M. Gámez and T. Cabello. 2015a. Functional response and population dynamics for fighting predator, based on activity distribution. J. Theor. Biol. 368: 7482.

    • Search Google Scholar
    • Export Citation
  • Garay, J., Z. Varga, T.F., Móri, I. López, M. Gámez, J.R. Gallego and T. Cabello. 2018. Opportunistic random searcher versus intentional search image user. Scientific Reports 8: 3336

    • Search Google Scholar
    • Export Citation
  • Garcia-Martín, M., M. Gámez, A. Torres-Ruíz and T. Cabello. 2008. Functional response of, Chelonus oculator (Hy: Braconidae) to temperature, and its consequences to parasitims. Community Ecol. 9: 4551.

    • Search Google Scholar
    • Export Citation
  • Geritz, S. and M. Gyllenberg. 2012. A mechanistic derivation of the DeAngelis-Beddington functional response. J. Theor. Biol. 314: 106108.

    • Search Google Scholar
    • Export Citation
  • Getty, T. 1985. Discriminability and the sigmoid functional response: How optimal foragers could stabilize model-mimic complexes. Am. Nat. 125: 239256.

    • Search Google Scholar
    • Export Citation
  • Hadjichrysanthou, C. and M. Broom. 2012. When should animals share food? Game theory applied to kleptoparasitic populations with food sharing. Behav. Ecol. 23: 977991.

    • Search Google Scholar
    • Export Citation
  • Hammill, E., O.L. Petchey and B.R. Anholt. 2010. Predator functional response changed by induced defenses in prey. Am. Nat. 176: 723731.

    • Search Google Scholar
    • Export Citation
  • Hammond, J.I., B. Luttbeg and A. Sih. 2007. Predator and prey space use: Dragonflies and tadpoles in an interactive game. Ecology 88: 15251535.

    • Search Google Scholar
    • Export Citation
  • Hassell, M.P. 1978. The Dynamics of Arthropod Predator-prey Systems. Princeton Univ. Press, New Jersey.

  • Hayward, M.W. and G.I. Kerley. 2005. Prey preference of the lions, (Panthera leo). J. Zool. London 267: 309322.

  • Holland, H.J.N. and D.L. DeAngelis. 2010. A consumer-resource approach to the density dependent population dynamics of mutualism. Ecology 91: 12861295.

    • Search Google Scholar
    • Export Citation
  • Holland, J.N., D.L. DeAngelis and J.L. Bronstein. 2002. Population dynamics and mutualism: functional responses of benefits and costs. Am. Nat. 159: 231244.

    • Search Google Scholar
    • Export Citation
  • Holling, C.S. 1959a. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entom. 91: 293320.

    • Search Google Scholar
    • Export Citation
  • Holling, C.S. 1959b. Some characteristics of simple types of predation and parasitism. Can. Entom. 91: 38598.

  • Holling, C.S. 1966. The functional response of invertebrate predators to prey density. Mem. Entom. Soc. Can. 48: 588.

  • Holt, R.D. 1985. Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution. Theor. Pop. Biol. 28: 181208.

    • Search Google Scholar
    • Export Citation
  • Holt, R.D. and M.B. Bonsall. 2017. Apparent competition. Ann. Rev. Ecol. Evol. Syst. 48: 447171.

  • Hossie, T.J. and D.L. Murray. 2010. You can't run but you can hide: refuge use in frog tadpoles elicits density-dependent predation by dragonfly larvae. Oecologia 163: 395404.

    • Search Google Scholar
    • Export Citation
  • Hossie, T.J. and D.L. Murray. 2016. Spatial arrangement of prey affects the shape of ratio-dependent functional response in strongly antagonistic predators. Ecology 97: 834841.

    • Search Google Scholar
    • Export Citation
  • Houston, A.I. and J.M. McNamara. 1985. A general theory of central place foraging for single-prey loaders. Theor. Pop. Biol. 28: 233262.

    • Search Google Scholar
    • Export Citation
  • Houston, A.I. and J.M. McNamara. 1999. Models of Adaptive Behaviour. Cambridge

  • Hugie, D.M. and L.M. Dill, 1994. Fish and game: a game theoretic approach to habitat selection by predators and prey. J. Fish Biol. 45: 151169.

    • Search Google Scholar
    • Export Citation
  • Huisman, G. and R.J. de Boer, 1997. A formal derivation of the “Beddington” functional response. J. Theor. Biol. 185: 389400.

  • Inger, R., S. Bearhop, J.A. Robinson and G. Ruxton. 2006. Prey choice affects the trade-off balance between predation and starvation in an avian herbivore. Anim. Behav. 71: 13351341.

    • Search Google Scholar
    • Export Citation
  • Ivlev, V.S. 1961. Experimental Ecology of the Feeding of Fishes. Yale Univ. Press, New Haven, CT.

  • Iyengar, E.V. 2008. Kleptoparasitic interactions throughout the animal kingdom and a re-evaluation, based on participant mobility, of the conditions promoting the evolution of kleptoparasitism. Biol. J. Linnean Soc. 93: 745762,

    • Search Google Scholar
    • Export Citation
  • Jeschke, J.M., M. Kopp and R. Tollrian. 2002. Predator functional responses: Discriminating between handling and digesting prey. Ecol. Monogr. 72: 95112.

    • Search Google Scholar
    • Export Citation
  • Johns, M.V. and R.G. Miller. 1963. Average renewal loss rates. Ann. Math. Stat. 34: 396401.

  • Jost, C. and S.P. Ellner. 2000. Testing for predator dependence in predator-prey dynamics: a non-parametric approach. Proc. R. Soc. B. 267: 16111620.

    • Search Google Scholar
    • Export Citation
  • Jost, C., G. Devulder, J.A. Vucetich, R.O. Peterson and R. Arditi. 2005. The wolves of Island Royale display scale-invariant satiation and ratio-dependent predation on moose. J. Anim. Ecol. 74: 809816.

    • Search Google Scholar
    • Export Citation
  • Kalinoski, R.M. and J.P. DeLong, 2016. Beyond body mass: how prey traits improve predictions of functional response parameters. Oecologia 180: 543550.

    • Search Google Scholar
    • Export Citation
  • Kannan, D. 1983. A Markov chain analysis of predator strategy in a model-mimic system. Bull. Math. Biol. 45: 347400.

  • Kolmogorov, A. 1931 Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung” (On Analytical Methods in the Theory of Probability). Mathematische Annalen 104: 415458.

    • Search Google Scholar
    • Export Citation
  • Kohlmann, S.G., J.H. Matis and K.L. Risenhoover. 1999. Estimating handling times for herbivore diets: a statistical method using the gamma distribution. J. Anim. Ecol. 68: 638645.

    • Search Google Scholar
    • Export Citation
  • Kondoh, M. 2003. Foraging adaptation and the relationship between food-web complexity and stability. Science 299: 13881391.

  • Kondoh, M. 2006. Does foraging adaptation create the positive complexity-stability relationship in realistic food-web structure?, J. Theor. Biol. 238: 646651.

    • Search Google Scholar
    • Export Citation
  • Kondoh, M. 2007. Anti-predator defence and the complexity-stability relationship of food webs. Proc. R. Soc. B. 274: 16171624.

  • Kooi, B.W. 2015. Modelling the dynamics of traits involved in fighting-predators-prey system. J. Math. Biol. 71: 15751605.

  • Kooijman, S.A.L.M. 2006. Pseudo-faeces production in bivalves. J. Sea Res. 56: 103106.

  • Kotler, B. and W.A. Mitchell. 1995. The effect of costly information in diet choice. Evol. Ecol. 9: 1829.

  • Kratina, P., M. Vos, A. Bateman and B.R. Anholt. 2009. Functional responses modified by predator density. Oecologia 159: 425433.

  • Krivan, V. and R. Cressman. 2009. On evolutionary stability in prey-predator models with fast behavioral dynamics. Evol. Ecol. Res. 11: 227251.

    • Search Google Scholar
    • Export Citation
  • Krivan, V. and R. Cressman, 2017. Interaction times change evolutionary outcomes: Two-player matrix games. J. Theor. Biol. 416: 199207.

    • Search Google Scholar
    • Export Citation
  • Krivan, V., R. Cressman and C. Schneider, 2008. The ideal free distribution: A review and synthesis of the game-theoretic perspective. Theor. Pop. Biol. 73: 403425.

    • Search Google Scholar
    • Export Citation
  • Krivan, V. and O.J. Schmitz, 2003. Adaptive foraging and flexible food web topology. Evol. Ecol. Res. 5: 623652.

  • Krivan, V. and A. Sikder. 1999. Optimal foraging and predator-prey dynamics II. Theor. Popul. Biol., 55: 111126.

  • Lester, P.J. and R. Harmsen. 2002. Functional and numerical responses do not always indicate the most effective predator for biological control: an analysis of two predators in a two-prey system. J. Appl. Ecol. 39: 455468.

    • Search Google Scholar
    • Export Citation
  • Lett, C., P. Auger and J.M. Gaillard. 2004. Continuous cycling of grouped vs. solitary strategy frequencies in a predator-prey model. Theor. Pop. Biol. 65: 263270.

    • Search Google Scholar
    • Export Citation
  • Lima, S.L. 2002. Putting predators back into behavioral predator-prey interactions. TREE 17: 7075.

  • Lima, S.L. and L.M. Dill. 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68: 619640.

    • Search Google Scholar
    • Export Citation
  • McCoy, M.W., B.M. Bolker, K.M. Warkentin and J.R. Vonesh. 2011. Predicting predation through prey ontogeny using size-dependent functional response models. Am. Nat. 177: 752766.

    • Search Google Scholar
    • Export Citation
  • MacDougall, A. and M. Dawkins. 1998. Müllerian mimicry and the receiver psychology of imperfect discrimination. Anim. Behav. 55: 12811288

    • Search Google Scholar
    • Export Citation
  • McKane, A.J. and T.J. Newman 2005. Predator-prey cycles from resonant amplification of demographic stochasticity. Phys. Rev Lett. 94: 218102.

    • Search Google Scholar
    • Export Citation
  • McNair, J.N. 1987. Stability effects of prey refuges with entry-exit dynamics. J. Theor. Biol. 125: 449464.

  • McNamara, J.M. 1979. A generalized model of optimal diets. Theor. Pop. Biol. 15: 159170.

  • McNamara, J.M. 1985. An optimal sequential policy for controlling a Markov renewal process. J. Appl. Prob. 22: 324335.

  • McNamara, J.M., A.I. Houston and E.J. Collins. 2006. Optimality models in behavioral biology, SIAM Rev. 43: 413466.

  • Merilaita, S. 2006. Frequency-dependent predation and maintenance of prey polymorphism. J. Evol. Biol. 19: 20222030.

  • Metz, J.A.J. and O. Diekmann. 1986. The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics Volume 68. Springer, Berlin

    • Search Google Scholar
    • Export Citation
  • Metz, J.A.J. and F.H.D. van Batenburg. 1985. Holling's “hungry mantid” model for the invertibrate functional response considered as a Markov process. Part I: The full model and some of its limits. J. Math. Biol. 22: 209238.

    • Search Google Scholar
    • Export Citation
  • Metz J.A.J , M.W. Sabelis and J.H. Kuchlein. 1988. Sources of variation in predation rates at high prey densities: an analytic model and a mite example. Exp. Appl. Acarol. 5: 187205.

    • Search Google Scholar
    • Export Citation
  • Molla, H., R. Md. Sabiar and S. Sarwardi. 2018. Dynamics of a predator-prey model with Holling type II functional response incorporating a prey refuge depending on both the species. Int. J. Nonlin. Sci. Num. Simul. 20:116,

    • Search Google Scholar
    • Export Citation
  • Murdoch, W.W., S. Avery and M.E.B. Smyth. 1975. Switching in predatory fish. Ecology 56: 10941105.

  • Nicholson, A.J. and V.A. Bailey. 1935. The Balance of Animal Populations.—Part I. Proc. Zool. Soc. London 3: 551598.

  • Oaten, A. 1977. Optimal foraging in patches: a case for stochasticity. Theor. Pop. Biol. 12: 263285.

  • Oaten, A. and W.W. Murdoch 1975. Switching, functional response, and stability in predator-prey systems. Am. Nat. 109: 299318.

  • Okuyama, T. and R.L. Ruyle. 2011. Solutions for functional response experiments. Acta Oecol. 37: 512516.

  • Pavlic, T.P. and K.M. Passino. 2011. Generalizing foraging theory for analysis and design. Int. J. Robot. Res. 30: 505523.

  • Pawar, S., A.I. Dell and V.M. Savage. 2012. Dimensionality of consumer search space drives trophic interaction strengths. Nature 486: 485489.

    • Search Google Scholar
    • Export Citation
  • Punzalan, D., F.H. Rodd and K.A. Hughes. 2005. Perceptual processes and the maintenance of polymorphism through frequency dependent predation. Evol. Ecol. 19: 30332.

    • Search Google Scholar
    • Export Citation
  • Real, L.A. 1977. The kinetics of functional response. Am. Nat. 111: 289300.

  • Rogers, D. 1972. Random search and insect population models. J. Anim. Ecol. 41: 369383.

  • Royama, T. 1971. A comparative study of models for predation and parasitism, Res. Pop. Ecol. 13: 191.

  • Ruxton, G.D. and W.S.C. Gurney, 1994. Deriving the functional response without assuming homogeneity. Am. Nat. 144: 537541.

  • Ruxton, G.D., W.S.C. Gurney and A.M. De Roos. 1992. Interference and generation cycles. Theor. Pop. Biol. 42:235253,

  • Sabelis, M.W. 1990. How to analyse prey preference when prey density varies? A new method to discriminate between effects of gut fullness and prey type composition. Oecologia 82: 289298.

    • Search Google Scholar
    • Export Citation
  • Saleem, M., A.H. Sadiyal, P. Edi and P.R. Arora. 2006. Evolutionarily stable strategy for defensive switching. Appl. Math. Comp. 177: 697713.

    • Search Google Scholar
    • Export Citation
  • Scharf, I., Y. Lubin and O. Ovadia. 2011. Foraging decisions and behavioural flexibility in trap-building predators: a review. Biol. Rev. 86: 626639.

    • Search Google Scholar
    • Export Citation
  • Sherratt T. N. 2002. The evolution of imperfect mimicry. Behav. Ecol. 13: 821826.

  • Sih, A. 1987. Prey refuges and predator-prey stability. Theor. Pop. Biol. 31: 112.

  • Sirot, E. 2012. Negotiation may lead selfish individuals to cooperate: the example of the collective vigilance game. Proc. R. Soc. B. 279: 28622867.

    • Search Google Scholar
    • Export Citation
  • Skalski, G.T. and J.F. Gilliam. 2001. Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82: 30833092.

    • Search Google Scholar
    • Export Citation
  • Smart, S.L., R.A. Stillman and K.J. Norris. 2008. Measuring the functional responses of farmland birds: an example for a declining seed-feeding bunting. J. Anim. Ecol. 77: 687695.

    • Search Google Scholar
    • Export Citation
  • Solomon, M.E. 1949. The natural control of animal populations. J. Anim. Ecol. 18: 135.

  • Spalinger, D.E. and N.T. Hobbs. 1992. Mechanisms of foraging in mammalian herbivores: New models of functional response. Am. Nat. 140: 325348.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. and M. Broom. 2018. A game-theoretical model of kleptoparasitic behavior in an urban gull (Laridae) population. Behav. Ecol. 29: 6078.

    • Search Google Scholar
    • Export Citation
  • Stephens, D.W. and J.R. Krebs. 1986. Foraging Theory. Princeton Univ. Press, Princeton.

  • Tellez, M.M., G. Tapia, M. Gámez, T. Cabello and H.F. Van Emden. 2009. Predation of, Bradysia sp. (Dip.: Sciaridae), Liriomyza trifolii (Burgess in Comstock 1880) (Dip.: Agromyzidae) and Bemisia tabaci (Gennadius 1889) (Hom.: Aleyrodidae) by Coenosia attenuata Stein 1903 (Dip.: Muscidae) in greenhouse crops. Europ. J. Entom. 106: 199204.

    • Search Google Scholar
    • Export Citation
  • Tinbergen, L. 1960. The natural control of insects in pinewoods. 1. Factors influencing the intensity of predation by songbirds. Archives Néerlandaises de Zoologie 13: 265343.

    • Search Google Scholar
    • Export Citation
  • Treves, A. 2000. Theory and method in studies of vigilance and aggregation. Anim. Behav. 60: 711722.

  • Toscano, B.J., B. Newsome and B.D. Griffen. 2014. Parasite modification of predator functional response. Oecologia 175: 345352.

  • Turelli, M., J.H. Gillespie and T.W. Schoener. 1982. The fallacy of the fallacy of the averages in ecological optimization theory. Am. Nat. 119: 879884.

    • Search Google Scholar
    • Export Citation
  • Uchida, S., B. Drossel and U. Brose. 2007. The structure of food webs with adaptive behavior. Ecol. Model. 206: 263276.

  • van Baalen, M., V. Krivan, P.C.J. van Rijn and M.W. Sabelis. 2001. Alternative food, switching predators, and the persistence of predator-prey systems. Am. Nat. 157: 512524.

    • Search Google Scholar
    • Export Citation
  • van Baalen, M. and M.W. Sabelis. 1993. Coevolution of patch selection strategies of predator and prey and the consequences for ecological stability. Am. Nat. 142: 646670.

    • Search Google Scholar
    • Export Citation
  • Valdovinos, F.S., R. Ramos-Jiliberto, L. Garay-Narváez, P. Urbani and J.A. Dunne, 2010. Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecol. Lett. 13: 15461559.

    • Search Google Scholar
    • Export Citation
  • Van der Meer J. and I.M. Smallegange. 2009. A stochastic version of the Beddington-DeAngelis functional response: modelling interference for a finite number of predators. J. Anim. Ecol. 78: 13442.

    • Search Google Scholar
    • Export Citation
  • Van Leeuwen, E., V.A.A. Jansen and P. W. Bright, 2007. How population dynamics shape the functional response in a one-predator-two-prey system. Ecology 88: 15711581.

    • Search Google Scholar
    • Export Citation
  • Vardi, R., Z. Abramsky, B.P., Kotler, O. Altstein and M.L. Rosenzweig. 2017. How does the presence of a conspecific individual change the behavioral game that a predator plays with its prey?, Oecologia 184: 597607.

    • Search Google Scholar
    • Export Citation
  • Vuchetich, J. A., R.O. Peterson and C.L. Schaffer. 2002. The effect of prey and predator densities on wolf predation. Ecology 83: 30033013.

    • Search Google Scholar
    • Export Citation
  • Wald, A. 1944. On cumulative sums of random variables. Ann. Math. Stat. 15: 283296.

  • Wang, Y., H. Wu and S. Sun. 2012. Persistence of pollination mutualisms in plant-pollinator-robber systems. Theor. Pop. Biol. 81: 243250.

    • Search Google Scholar
    • Export Citation
  • Wittenberger, J.F. and J.L. Hunt. 1985. The adaptive significance of coloniality in birds. In: D.S. Farner J.R. King and K.C. Parkes (eds), Avian Biology, Vol. 3 Academic Press, New York. pp. 175.

    • Search Google Scholar
    • Export Citation
  • Yates, G.E. and M. Broom. 2007. A stochastic model of kleptoparasitism. J. Theor. Biol. 248: 480489.

  • Yearsley, J.M. 2003. Optimal diet selection, frequency dependence and prey renewal. Theor. Pop. Biol. 64: 129139.