Authors:
P. Golinia Shahid Beheshti University, G. C., Evin, Tehran, 1983969411, Iran

Search for other papers by P. Golinia in
Current site
Google Scholar
PubMed
Close
,
A. Nasrolahi Shahid Beheshti University, G. C., Evin, Tehran, 1983969411, Iran

Search for other papers by A. Nasrolahi in
Current site
Google Scholar
PubMed
Close
, and
F. R. Barboza GEOMAR Helmholtz Centre for Ocean Research, Düsternbrooker Weg 20, 24105 Kiel, Germany

Search for other papers by F. R. Barboza in
Current site
Google Scholar
PubMed
Close
Open access

Abstract

Biofouling is predicted to increase in the course of global warming, making the study and monitoring of its ecological and economic consequences of great importance. The present study describes, for the first time, recruitment and successional patterns of fouling communities in the Caspian Sea. During one year, short-term panels (STP; replaced every 2 months) and long-term panels (LTP; retrieved after 4, 8 and 12 months) were deployed in the Western Iranian coast of the Caspian Sea. Temporal trends in both sets of panels were evaluated through Generalized Additive Models and discussed in light of the environmental variables registered in each sampling event. Recruitment and successional patterns observed at the community level were mainly driven by barnacles and bryozoans, the dominant taxa over the entire sampling period. Panel coverage, biomass and inorganic to organic matter ratio exhibited clear seasonal patterns in STP, following temperature and chlorophyll a trends. In LTP, coverage and biomass increased over the study period, while the inorganic to organic matter ratio peaked in summer and decreased during autumn and winter months. These results represent a baseline for future studies on biofouling communities in the Caspian Sea, where this topic has been completely neglected.

  • Adams, V.D . 1990. Chemical oxygen demand (COD) ampule method. In: Water and Wastewater Examination Manual. CRC Press, Florida. pp. 173177.

    • Search Google Scholar
    • Export Citation
  • Anderson, D.T . 1994. Barnacles: Structure, Function, Development and Evolution. Chapman and Hall, London.

  • Balaji, M. and K.S. Rao. 2004. Biofouling communities as tools in environmental impact assessment - A study at Visakhapatnam harbour, east coast of India. Asian J. Microbiol. Biotechnol. Environ. Sci. 6:223229.

    • Search Google Scholar
    • Export Citation
  • Benedetti-Cecchi, L . 2000. Predicting direct and indirect interactions during succession in a mid-littoral rocky shore assemblage. Ecol. Monogr. 70:4572.

    • Search Google Scholar
    • Export Citation
  • Boyle, M.D., S.C. Janiak and S. Craig. 2006. Succession in a Humboldt Bay Marine Fouling community: the role of exotic species, larval settlement and winter storms. In: Proceedings of the 2004 Humboldt Bay Symposium. pp. 215234

    • Search Google Scholar
    • Export Citation
  • Canning-Clode, J., N. Bellou, M.J. Kaufmann and M. Wahl. 2009. Local-regional richness relationship in fouling assemblages-effects of succession. Basic Appl. Ecol. 110:745753.

    • Search Google Scholar
    • Export Citation
  • Canning-Clode, J., H. Sugden. 2014. Assessing fouling assemblages. In: S. Dobretsov, D.N. Williams and J.C. Thomason, (eds.), Biofouling Methods. Wiley, Chichester. pp. 252271.

    • Search Google Scholar
    • Export Citation
  • Cao, S., J. Wang, H. Chen and D. Chen. 2011. Progress of marine biofouling and antifouling technologies. Chin. Sci. Bull. 56:598612.

  • Cifuentes, M, I. Krueger, C.P. Dumont, M. Lenz and M. Thiel. 2010. Does primary colonization or community structure determine the succession of fouling communities? J. Exp. Mar. Biol. Ecol. 395:1020.

    • Search Google Scholar
    • Export Citation
  • Coetser, S.E. and T.E. Cloete. 2005. Biofouling and biocorrosion in industrial water systems. Crit. Rev. Microbiol. 31:213232.

  • Connor, D. and K. Hiscock. 1996. Data collection methods. In: K. Hiscock (ed.), Marine Nature Conservation Review: Rationale and Methods. Joint Nature Conservation Committee, Peterborough. pp. 5165.

    • Search Google Scholar
    • Export Citation
  • Crisp, D.J. and E. Bourget. 1985. Growth in barnacles. Adv. Mar Biol. 22:199244.

  • Dobretsov, S . 2015. Biofouling on artificial substrata in Muscat waters. JAMS. 19: 24 - 29.

  • Eaton, A.D., L.S. Clesceri and A.E. Greenberg. 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.

    • Search Google Scholar
    • Export Citation
  • Fitridge, I., T. Dempster, J. Guenther and R. de Nys. 2012. The impact and control of biofouling in marine aquaculture: a review. Biofouling 28:649669.

    • Search Google Scholar
    • Export Citation
  • Greene, C.H. and A. Schoener. 1982. Succession on marine hard substrata: a fixed lottery. Oecologia 55:289297.

  • Greene, J.K. and R.E. Grizzle. 2007. Successional development of fouling communities on open ocean aquaculture fish cages in the western Gulf of Maine, USA. Aquaculture 262:289301.

    • Search Google Scholar
    • Export Citation
  • Houle, K.C . 2015. The effects of suspended and accreted sediment on the marine invertebrate fouling community of Humboldt Bay. Humboldt State University, Arcata, California.

    • Search Google Scholar
    • Export Citation
  • Jenkins, S.R. and G.M. Martins. 2010. Succession on hard substrata. In: J.C. Thomason and S. Duerr (eds.), Biofouling. Wiley-Blackwell, Oxford, UK, pp. 6072.

    • Search Google Scholar
    • Export Citation
  • Kohler, K.E. and S.M. Gill. 2006. Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32:12591269.

    • Search Google Scholar
    • Export Citation
  • Krohling, W., D.S. Brotto and I.R. Zalmon. 2006. Fouling community recruitment on an artificial reef in the north coast of Rio de Janeiro State. J. Coast. Res. 1:11181121.

    • Search Google Scholar
    • Export Citation
  • Lin, H.J. and K.T. Shao. 2002. The development of subtidal fouling assemblages on artificial structures in Keelung Harbor, Northern Taiwan. Zool. Stud. 41:170181.

    • Search Google Scholar
    • Export Citation
  • Lindeyer, F. and A. Gittenberger. 2011. Ascidians in the succession of marine fouling communities. Aquatic Invasions 6:421434.

  • Liow, L.H., E. Di Martino, K.L. Voje, S. Rust and P.D. Taylor. 2016. Interspecific interactions through 2 million years: are competitive outcomes predictable? Proc. Royal Soc. B. 283:20160981.

    • Search Google Scholar
    • Export Citation
  • Maggiore, F. and E. Keppel. 2007. Biodiversity and distribution of polychaetes and molluscs along the Dese estuary (Lagoon of Venice, Italy). Hydrobiologia 588:189203.

    • Search Google Scholar
    • Export Citation
  • Masi, B.P., R. Coutinho and I. Zalmon. 2015. Successional trajectory of the fouling community on a tropical upwelling ecosystem in southeast Rio de Janeiro, Brazil. Braz. J. Oceanogr. 63:161168.

    • Search Google Scholar
    • Export Citation
  • Melo, L.F. and T.R. Bott. 1997. Biofouling in water systems. Exp. Therm. Fluid Sci. 14:375381.

  • Melzner, F., P. Stange, K. Trübenbach, J. Thomsen, I. Casties, U. Panknin, S.N. Gorb and M.A. Gutowska. 2011. Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel, Mytilus edulis. PLoS One 6:e24223.

    • Search Google Scholar
    • Export Citation
  • Minchinton, T.E. and R.E. Scheibling. 1991. The influence of larval supply and settlement on the population structure of barnacles. Ecology 72(5): 18671879.

    • Search Google Scholar
    • Export Citation
  • Nandakumar, K . 1996. Importance of timing of panel exposure on the competitive outcome and succession of sessile organisms. Mar. Ecol. Prog. Ser. 131:191203.

    • Search Google Scholar
    • Export Citation
  • Nandakumar, K., M. Tanaka and T. Kikuchi. 1993. Interspecific competition among fouling organisms in Tomioka Bay, Japan. Mar. Ecol. Prog. Ser. 31:4350.

    • Search Google Scholar
    • Export Citation
  • Nasrolahi, A., C. Pansch, M. Lenz and M. Wahl. 2012. Being young in a changing world: how temperature and salinity changes interactively modify the performance of larval stages of the barnacle, Amphibalanus improvisus. Mar. Biol. 159:331340.

    • Search Google Scholar
    • Export Citation
  • Nasrolahi, A., C. Pansch, M. Lenz and M. Wahl. 2013. Temperature and salinity interactively impact early juvenile development: a bottleneck in barnacle ontogeny. Mar. Biol. 160:11091117.

    • Search Google Scholar
    • Export Citation
  • Ong, J.L.J. and K.S. Tan. 2012. Observations on the subtidal fouling community on jetty pilings in the Southern Islands of Singapore. In: K.S. Tan (ed.), Contrib. Mar. Sci. National University of Singapore, pp. 121126.

    • Search Google Scholar
    • Export Citation
  • Pati, S.K. and M.V. Rao. 2015. Fouling load in a tropical Indian harbor: spatial and temporal pattern. J. Mar. Biol. Assoc. India 57:6.

  • Pati, S.K., M.V. Rao and M. Balaji. 2015. Spatial and temporal changes in biofouling community structure at Visakhapatnam harbour, east coast of India. Trop. Ecol. 56:139154.

    • Search Google Scholar
    • Export Citation
  • Pechenik, J.A., D. Rittschof and A.R. Schmidt. 1993. Influence of delayed metamorphosis on survival and growth of juvenile barnacles. Balanus amphitrite. Mar. Biol. 115:287294.

    • Search Google Scholar
    • Export Citation
  • Pinnegar, J. K., N. V. C. Polunin, P. Francour, F. Badalamenti, R. Chemello, M.L. Harmelin-Vivien, B. Hereu, M. Milazzo, M. Zabala, G. d’Anna and C. Pipitone. 2000. Trophic cascades in benthic marine ecosystems: lessons for fisheries and protected-area management. Environ. Conserv. 27:179200.

    • Search Google Scholar
    • Export Citation
  • Poloczanska, E.S. and A.J. Butler. 2010. Biofouling and climate change. In: S. Dürr and J.C. Thomason (eds.), Biofouling. Wiley-Blackwell, UK. pp. 333347.

    • Search Google Scholar
    • Export Citation
  • Rajagopal, S., K.V.K. Nair, G. Van der Velde and H.A. Jenner. 1997. Seasonal settlement and succession of fouling communities in Kalpakkam, east coast of India. Neth. J. Aquat. Ecol: 30:309325.

    • Search Google Scholar
    • Export Citation
  • Relini, G., M. Relini, G. Torchia and G. De Angelis. 2002. Trophic relationships between fishes and an artificial reef. ICES J. Mar Sci. 59:S36S42.

    • Search Google Scholar
    • Export Citation
  • Ruiz, G.M., T. Huber, K. Larson, L. McCann, B. Steves, P. Fofonoff and A.H. Hines. 2006. Biological Invasions in Alaska's Coastal Marine Ecosystems: Establishing a Baseline. Final Report. Prince William Sound Regional Citizens’ Advisory Council and U.S. Fish and Wildlife Service, Anchorage, Alaska.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S. and S. Godwin Wesley. 2008. Seasonal variability in the recruitment of macrofouling community in Kudankulam waters, east coast of India. Estuar. Coast. Shelf Sci. 79:518524.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S. and S.G. Wesley. 2011. Influence of submersion season on the development of test panel biofouling communities in a tropical coast. Estuar. Coast. Shelf Sci. 94:155163.

    • Search Google Scholar
    • Export Citation
  • Schultz, M.P., J.A. Bendick, E.R. Holm and W.M. Hertel. 2011. Economic impact of biofouling on a naval surface ship. Biofouling 27:8798.

    • Search Google Scholar
    • Export Citation
  • Sepkoski Jr, J.J., F.K. McKinney and S. Lidgard. 2000. Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans. Paleobiology 26:718.

    • Search Google Scholar
    • Export Citation
  • Skinner, L.F., F.N. Siviero and R. Coutinho. 2007. Comparative growth of the intertidal barnacle, Tetraclita stalactifera (Thoracica: Tetraclitidae) in sites influenced by upwelling and tropical conditions at the Cabo Frio region. Brazil. Rev. Biol. Trop. 55:7178.

    • Search Google Scholar
    • Export Citation
  • Smale, D.A., T. Wernberg, L.S. Peck and D.K.A. Barnes. 2011. Turning on the heat: ecological response to simulated warming in the sea. PLoS One 6:e16050.

    • Search Google Scholar
    • Export Citation
  • Sokołowski, A., M. Ziółkowska, P. Balazy, P. Kuklinski and I. Plichta. 2017. Seasonal and multi-annual patterns of colonisation and growth of sessile benthic fauna on artificial substrates in the brackish low-diversity system of the Baltic Sea. Hydrobiologia 790:183200.

    • Search Google Scholar
    • Export Citation
  • Sutherland, J.P. and R.H. Karlson. 1977. Development and stability of the fouling community at Beaufort, North Carolina. Ecol. Monogr. 47:425446.

    • Search Google Scholar
    • Export Citation
  • Thiyagarajan, V., T. Harder, J.W. Qiu and P.Y. Qian. 2003. Energy content at metamorphosis and growth rate of the early juvenile barnacle. Balanus amphitrite. Mar. Biol. 143:543554.

    • Search Google Scholar
    • Export Citation
  • Thomsen, J., M.A. Gutowska, J. Saphörster, A. Heinemann, K. Trubenbach, J. Fietzke, C. Hiebenthal, A. Eisenhauer, A. Kortzinger, M. Wahl and F. Melzner. 2010. Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7:38793891.

    • Search Google Scholar
    • Export Citation
  • Todd, C.D . 1998. Larval supply and recruitment of benthic invertebrates: do larvae always disperse as much as we believe? Hydrobiologia 132:121.

    • Search Google Scholar
    • Export Citation
  • Underwood, A.J. and M.J. Anderson. 1994. Seasonal and temporal aspects of recruitment and succession in an intertidal estuarine fouling assemblage. J. Mar. Biol. Assoc. U.K. 74:563584.

    • Search Google Scholar
    • Export Citation
  • Wołowicz, M., A. Sokołowski, A.S. Bawazir and R. Lasota. 2006. Effect of eutrophication on the distribution and ecophysiology of the mussel. Mytilus trossulus (Bivalvia) in southern Baltic Sea (the Gulf of Gdańsk). Limnol. Oceanogr. 51:580590.

    • Search Google Scholar
    • Export Citation
  • Wood, S. and M.S. Wood. 2016. Package “mgcv.” R package version 1-7

  • Yebra, D.M., S. Kiil and K. Dam-Johansen. 2004. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 50:75104.

    • Search Google Scholar
    • Export Citation
  • Zevina, G.B., I.A. Kuznetsova and I.V. Starostin. 1965. The status of marine fouling in the Caspian Sea. In: I.V. Starostin (ed.), Marine Fouling and Borers. USSR Academy of Sciences Trans. of the Institute of Oceanology 49 (Israel translation 1968)

    • Search Google Scholar
    • Export Citation
  • Zhang, H., W. Cao, Z. Wu, X. Song, J. Wang and T. Yan. 2015. Biofouling on deep-sea submersible buoy systems off Xisha and Dongsha Isl ands in the northern South China Sea. Int. Biodeterior. Biodegradation 104:9296.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Community Ecology
Language English
Size A4
Year of
Foundation
2000
Volumes
per Year
1
Issues
per Year
3
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)