View More View Less
  • 1 Dalhousie University, Halifax, NS, Canada
  • 2 Dalhousie University, Halifax, NS, Canada
  • 3 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
Restricted access

Abstract

Ecological communities are shaped by a complex interplay between abiotic forcing, biotic regulation and demographic stochasticity. However, community dynamics modelers tend to focus on abiotic forcing overlooking biotic interactions, due to notorious challenges involved in modeling and quantifying inter-specific interactions, particularly for species-rich systems such as planktonic assemblages. Nevertheless, inclusive models with regard to the full range of plausible drivers are essential to characterizing and predicting community response to environmental changes. Here we develop a Bayesian model for identifying, from in-situ time series, the biotic, abiotic and stochastic factors underlying the dynamics of species-rich communities, focusing on the joint biomass dynamics of biologically meaningful groups. We parameterize a multivariate model of population co-variation with an explicit account for demographic stochasticity, density-dependent feedbacks, pairwise interactions, and abiotic stress mediated by changing environmental conditions and resource availability, and work out explicit formulae for partitioning the temporal variance of each group in its biotic, abiotic and stochastic components. We illustrate the methodology by analyzing the joint biomass dynamics of four major phytoplankton functional types namely, diatoms, dinoflagellates, coccolithophores and phytoflagellates at Station L4 in the Western English Channel using weekly biomass records and coincident measurements of environmental covariates describing water conditions and potentially limiting resources. Abiotic and biotic factors explain comparable amounts of temporal variance in log-biomass growth across functional types. Our results demonstrate that effective modelling of resource limitation and inter-specific interactions is critical for quantifying the relative importance of abiotic and biotic factors.

  • Araújo, M.B. and M. Luoto. 2007. The importance of biotic interactions for modelling species distributions under climate change. Global Ecol. Biogeogr. 16: 743753.

    • Search Google Scholar
    • Export Citation
  • Boalch, G.T., D.S. Harbour and E.I. Butler. 1978. Seasonal phytoplankton production in the western English Channel 1964–1974. J. Mar. Biol. Assoc. UK 58: 943953.

    • Search Google Scholar
    • Export Citation
  • Brook, B.W. and C.J.A. Bradshaw. 2006. Strength of evidence for density dependence in abundance time series of 1198 species. Ecology 87: 14451451.

    • Search Google Scholar
    • Export Citation
  • Brooks, C. and C. Tasman. 2018. Density and biotic interactions modify the combined effects of global and local stressors. Oikos 127: 17461758.

    • Search Google Scholar
    • Export Citation
  • Clark, N.J., K. Wells and O. Lindberg 2018. Unravelling changing interspecific interactions across environmental gradients using Markov random fields. Ecology 99: 12771283.

    • Search Google Scholar
    • Export Citation
  • Cooper, G.J. 2003. The Science of the Struggle for Existence. Cambridge University Press, Cambridge, UK.

  • Davis, A.J., J.H. Lawton, B. Shorrocks and L.S. Jenkinson. 1998a. Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. J. Anim. Ecol. 67: 600612.

    • Search Google Scholar
    • Export Citation
  • Davis, A., L.S. Jenkinson, J.H. Lawton, B. Shorrocks and S. Wood. 1998b. Making mistakes when predicting shifts in species range in response to global warming. Nature 391: 783786.

    • Search Google Scholar
    • Export Citation
  • De Baar, H.J.W. 1994. Von Liebig law of the minimum and plankton ecology (1899–1991). Prog. Oceanogr. 33: 347386.

  • Delean, S., B.W. Brook and C.J.A. Bradshaw. 2013. Ecologically realistic estimates of maximum population growth using informed Bayesian priors. Methods Ecol. Evol. 4: 3444.

    • Search Google Scholar
    • Export Citation
  • Doney, S.C., 2006. Phytoplankton in a warmer world. Nature 444: 695696.

  • Field, C.B., M.J. Behrenfeld, J.T. Randerson and P. Falkowski. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237240.

    • Search Google Scholar
    • Export Citation
  • Finkel, Z.V., A.J. Irwin and O. Schofield. 2004. Resource limitation alters the 3/4 size scaling of metabolic rates in phytoplankton. Mar. Ecol. Prog. Ser. 273: 269279.

    • Search Google Scholar
    • Export Citation
  • Finkel, Z.V., 2001. Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnol. Oceanogr. 46: 8694.

  • Finkel, Z.V. and A.J. Irwin. 2000. Modelling size-dependent photosynthesis: light absorption and the allometric rule. J. Theor. Biol. 204: 361369.

    • Search Google Scholar
    • Export Citation
  • Gelman, A., J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari and D.B. Rubin. 2013. Bayesian Data Analysis 3rd Ed. Chapman and Hall, London, England.

    • Search Google Scholar
    • Export Citation
  • George, E.I. and R.E. McCulloch. 1993. Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 85: 398409.

  • Gilks, W.R., S. Richardson and D.J. Spiegelhalter (eds.), 1996. Markov Chain Monte Carlo in Practice. Chapman and Hall, London, UK.

  • Gilman, S.E., M.C. Urban, J. Tewksbury, G.W. Gilchrist and R.D. Holt. 2010. A framework for community interactions under climate change. Trends Ecol. Evol. 25: 325331.

    • Search Google Scholar
    • Export Citation
  • Giraudeau, J. and G.W. Bailey. 1995. Spatia1 dynamics of cocco1ithophore communities during an upwelling event in the Southern Bengue1a system. Cont. Shelf Res. 15: 18251852.

    • Search Google Scholar
    • Export Citation
  • Götzenberger, L., F. de Bello, K.A. Bråthen, J. Davison, A. Dubuis, A. Guisan, et al. 2012. Ecological assembly rules in plant communities –approaches, patterns and prospects. Biol. Rev. 87: 111127.

    • Search Google Scholar
    • Export Citation
  • Hampton, S.E., E.E. Holmes, L.P. Scheef, M.D. Scheuerell, S.L. Katz, D.E. Pendleton and E.J. Ward. 2013. Quantifying effects of abiotic and biotic drivers on community dynamics with multivariate autoregressive (MAR) models. Ecology 94: 26632669.

    • Search Google Scholar
    • Export Citation
  • Hampton, S.E., M.D. Scheuerell and D.E. Schindler. 2006. Coalescence in the Lake Washington story: interaction strengths in a planktonic food web. Limnol. Oceanogr. 51: 20422051.

    • Search Google Scholar
    • Export Citation
  • Hartman, S.E., M.C. Hartman, D.J. Hydes, D. Smythe-Wright, F. Gohin, F. and P. Lazure. 2014. The role of hydrographic parameters, measured from a ship of opportunity, in bloom formation of Karenia mikimotoi in the English Channel. J. Mar. Syst. 140: 3949.

    • Search Google Scholar
    • Export Citation
  • Heikkinen, R.K., M. Luoto, R. Virkkala, R.G. Pearson and J.-H. Körber. 2007. Biotic interactions improve prediction of boreal bird distributions at macro-scales. Glob. Ecol. Biogeogr. 16: 754763.

    • Search Google Scholar
    • Export Citation
  • Hoerl, A. E. and R. W. Kennard. 1970. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12 (1): 5567.

  • Holligan, P.M. and D.S. Harbour. 1977. The vertical distribution and succession of phytoplankton in the western English Channel in 1975 and 1976. J. Mar. Biol. Assoc. U.K. 57: 10751093.

    • Search Google Scholar
    • Export Citation
  • Irwin, A.J. and Z.V. Finkel. 2018. Phytoplankton functional types: a trait perspective. In: Kirchman, D.M. and J.M. Gasol, (eds), Microbial Ecology of the Ocean. Wiley. Chapter 11, pp. 435465.

    • Search Google Scholar
    • Export Citation
  • Ives, A.R., B. Dennis, K.L. Cottingham and S.R. Carpenter. 2003. Estimating community stability and ecological interactions from time-series data. Ecol. Monogr. 73: 301330.

    • Search Google Scholar
    • Export Citation
  • Jeffreys, H., 1961. The Theory of Probability (3rd ed.). Oxford University Press, Oxford, UK

  • Kissling, W.D., C.F. Dormann, J. Groeneveld, T. Hickler, I. Kühn, G.J. McInerny, J.M. Montoya, C. Römermann, K. Schiffers, F.M. Schurr, A. Singer, J.-C. Svenning, E.Z. Niklaus, and R.B. O'Hara. 2012. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. J. Biogeogr. 39: 21632178.

    • Search Google Scholar
    • Export Citation
  • Lande, R., S. Engen and B-E. Saether. 2003. Stochastic Population Dynamics in Ecology and Conservation. Oxford University Press, Oxford.

  • Lany, N.K., P.L. Zarnetske, T.C. Gouhier and B.A. Menge. 2017. Incorporating Context Dependency of Species Interactions in Species Distribution Models. Integr. Comparat. Biol. 57: 159167, https://doi.org/10.1093/icb/icx057.

    • Search Google Scholar
    • Export Citation
  • Laws, E.A. 2013. Evaluation of in situ phytoplankton growth rates: A synthesis of data from varied approaches. Ann. Rev. Mar. Sci. 5: 247268.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., S.P. Harrison, P.I. Colin, E.T. Buitenhuis, et al. 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob. Change Biol. 11: 20162040.

    • Search Google Scholar
    • Export Citation
  • Litchman, E., C.A. Klausmeier, J.R. Miller, O.M. Schofield and P.G. Falkowksi. 2006. Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. Biogeosciences 3: 585606.

    • Search Google Scholar
    • Export Citation
  • Loreau, M. and C. de Mazancourt. 2008. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172: E48E6.

    • Search Google Scholar
    • Export Citation
  • Lunn, D.J., A. Thomas, N. Best and D. Spiegelhalter. 2000. WinBUGS- A Bayesian modelling framework: Concepts, structure, and extensibility. Stat. Comput. 10: 325337.

    • Search Google Scholar
    • Export Citation
  • McCarthy, M. 2007. Bayesian Methods in Ecology. Cambridge University Press, New York.

  • Menden-Deuer, S. and E.J. Lessard. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protest plankton. Limnol. Oceanogr. 45: 569579.

    • Search Google Scholar
    • Export Citation
  • Mutshinda, C.M., Z.V. Finkel, C.E. Widdicombe and A.J. Irwin. 2017. Phytoplankton traits from long-term oceanographic time-series. Mar. Ecol. Prog. Ser. 576: 1125.

    • Search Google Scholar
    • Export Citation
  • Mutshinda, C.M., Z.V. Finkel, C.E. Widdicombe and A.J. Irwin. 2016. Ecological equivalence of species within phytoplankton functional groups. Funct. Ecol. 30: 17141722.

    • Search Google Scholar
    • Export Citation
  • Mutshinda C.M. , Z.V. Finkel and A.J. Irwin. 2013. Which environmental factors control phytoplankton populations? A Bayesian variable selection approach. Ecol. Model. 269: 18.

    • Search Google Scholar
    • Export Citation
  • Mutshinda, C. M. and M. J. Sillanpää 2011. Bayesian shrinkage analysis of QTLs under shape-adaptive shrinkage priors, and accurate re-estimation of genetic effects. Heredity 107: 405412.

    • Search Google Scholar
    • Export Citation
  • Mutshinda, C.M. and M.J. Sillanpää. 2012. A decision rule for quantitative trait locus detection under the extended Bayesian LASSO model. Genetics 192: 14831491.

    • Search Google Scholar
    • Export Citation
  • Mutshinda, C.M., R.B. O'Hara and I.P. Woiwod. 2011. A multispecies perspective on ecological impacts of climatic forcing. J. Anim. Ecol. 80: 101107.

    • Search Google Scholar
    • Export Citation
  • Mutshinda, C.M. 2010. Bayesian Analysis of Community dynamics. PhD thesis, University of Helsinki, Helsinki, Finland.

  • Mutshinda, C.M. and M.J. Sillanpää. 2010. Extended Bayesian LASSO for multiple quantitative trait loci mapping and unobserved phenotype prediction. Genetics 186: 10671075.

    • Search Google Scholar
    • Export Citation
  • Mutshinda, C.M., R.B. O'Hara and I.P. Woiwod. 2009. What drives community dynamics? Proc. R. Soc. London, Ser. B 276: 2923-2929.

  • Mutshinda C.M. 2009. Cutting across discipline boundaries: Statistical prospects in disclosing and handling the workings of natural biodiversity. Intl. J. Biol. 1: 101103.

    • Search Google Scholar
    • Export Citation
  • Nicholson, A.J. 1933. The balance of animal populations. J. Anim. Ecol. 2: 131178.

  • O'Hara R.B. and M.J. Sillanpää. 2009. A review of Bayesian variable selection methods: what, how and which? Bayesian Analysis 4: 85115.

    • Search Google Scholar
    • Export Citation
  • Ovaskainen, O., J. Hottola and J. Siitonen. 2010. Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology 91: 25142521.

    • Search Google Scholar
    • Export Citation
  • Ovaskainen, O, G. Tikhonov, D. Dunson, V. Grøtan, S. Engen, B.-E. Sæther and N. Abrego. 2017. How are species interactions structured in species-rich communities? A new method for analysing time-series data. Proc. R. Soc. London, Ser. B 284: 20170768.

    • Search Google Scholar
    • Export Citation
  • Park, T. and G. Casella. 2008. The Bayesian LASSO. J. Amer. Stat. Assoc. 2008: 103: 681686.

  • Plummer, M., et al. 2003. Jags: A program for analysis of Bayesian graphical models using gibbs sampling. In Proceedings of the 3rd international workshop on distributed statistical computing, volume 124. Vienna, Austria.

    • Search Google Scholar
    • Export Citation
  • Pollock, L.J., R. Tingley, W.K. Morris, N. Golding, R.B. O'Hara, K.M. Parris, P.A. Vesk and M.A. McCarthy. 2014. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods Ecol. Evol. 5: 397406.

    • Search Google Scholar
    • Export Citation
  • Porzig, E.L., N.E. Seavy, J.M. Eadie, D.L. Humple, G.R. Geupel and T. Gardali. 2016. Interspecific interactions, population variation, and environmental forcing in the context of the community. Ecosphere 7 (6), e01349. 10.1002/ecs2.1349.

    • Search Google Scholar
    • Export Citation
  • Saether, B.-E., J. Tufto, S. Engen, K. Jerstad, O.W. Rostad and J.E. Skátan. 2000. Population dynamical consequences of climate change for a small temperate songbird. Science 287: 854856.

    • Search Google Scholar
    • Export Citation
  • Stachowicz, J.J. 2001. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51: 235246.

  • Stan Development Team. 2018. Stan modelling language user's guide and reference manual, version 2.18.0. http://mc-stan.org/.

  • Tibshirani, R. 1996. Regression shrinkage and selection via LASSO. J. Roy. Stat. Soc. B 58: 267288.

  • Thomas, A., R.B. O'Hara, U. Ligges and S. Sturtz. 2006. Making BUGS Open. R News 6: 1217.

  • van der Ploeg, R.R. and M. Kirkham. 1999. On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Sci. Soc. Am. J. 63: 10551062.

    • Search Google Scholar
    • Export Citation
  • Widdicombe, C.E., D. Eloire, D. Harbour, R.P. Harris and P.J. Somerfield. 2010a. Long-term phytoplankton community dynamics in the Western English Channel. J. Plankton Res. 32: 643655.

    • Search Google Scholar
    • Export Citation
  • Widdicombe, C.E., D. Eloire, D. Harbour, R.P. Harris and P.J. Somerfield. 2010b. Time series of phytoplankton abundance and composition at station L4 in the English Channel from 1988 to 2009. PANGAEA, https://doi.org/10.1594/PANGAEA.754335, In supplement to: Widdicombe, C.E. et al. (2010) Long-term phytoplankton community dynamics in the Western English Channel. J. Plankton Res. 32: 643655, https://doi.org/10.1093/plankt/fbp127.

    • Search Google Scholar
    • Export Citation

Click HERE for submission guidelines.


Manuscript submission: COMEC Manuscript Submission

 

  • Impact Factor (2018): 0.746
  • Ecology SJR Quartile Score (2018): Q2
  • Ecology, Evolution, Behavior and Systematics SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.428
  • SJR Hirsch-Index (2018): 25

Language: English

Founded in 2000
Publication: One volume of two issues annually
Publication Programme: 2020. Vol. 21.
Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Biology & Environmental Sciences
  • Elsevier/Geo Abstracts
  • Science Citation Index Expanded
  • SCOPUS
  • Zoological Abstracts

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Podani, János

Editor(s)-in-Chief: Jordán, Ferenc

Honorary Editor(s): Orlóci, László

Editorial Board

  • Madhur Anand, CAN (forest ecology, computational ecology, and ecological complexity)
  • S. Bagella, ITA (temporal dynamics, including succession, community level patterns of species richness and diversity, experimental studies of plant, animal and microbial communities, plant communities of the Mediterranean)
  • P. Batáry, HUN (landscape ecology, agroecology, ecosystem services)
  • P. A. V. Borges, PRT (community level patterns of species richness and diversity, sampling in theory and practice)
  • A. Davis, GER (supervised learning, multitrophic interactions, food webs, multivariate analysis, ecological statistics, experimental design, fractals, parasitoids, species diversity, community assembly, ticks, biodiversity, climate change, biological networks, cranes, olfactometry, evolution)
  • Z. Elek, HUN (insect ecology, invertebrate conservation, population dynamics, especially of long-term field studies, insect sampling)
  • T. Kalapos, HUN (community level plant ecophysiology, grassland ecology, vegetation-soil relationship)
  • G. M. Kovács, HUN (microbial ecology, plant-fungus interactions, mycorrhizas)
  • W. C. Liu,TWN (community-based ecological theory and modelling issues, temporal dynamics, including succession, trophic interactions, competition, species response to the environment)
  • L. Mucina, AUS (vegetation survey, syntaxonomy, evolutionary community ecology, assembly rules, global vegetation patterns, mediterranean ecology)
  • P. Ódor, HUN (plant communities, bryophyte ecology, numerical methods)
  • F. Rigal, FRA (island biogeography, macroecology, functional diversity, arthropod ecology)
  • D. Rocchini, ITA (biodiversity, multiple scales, spatial scales, species distribution, spatial ecology, remote sensing, ecological informatics, computational ecology)
  • F. Samu, HUN (landscape ecology, biological control, generalist predators, spiders, arthropods, conservation biology, sampling methods)
  • U. Scharler, ZAF (ecological networks, food webs, estuaries, marine, mangroves, stoichiometry, temperate, subtropical)
  • D. Schmera, HUN (aquatic communities, functional diversity, ecological theory)
  • M. Scotti, GER (community-based ecological theory and modelling issues, trophic interactions, competition, species response to the environment, ecological networks)
  • B. Tóthmérész, HUN (biodiversity, soil zoology, spatial models, macroecology, ecological modeling)
  • S. Wollrab, GER (aquatic ecology, food web dynamics, plankton ecology, predator-prey interactions)

 

Advisory Board

  • S. Bartha, HUN
  • S.L. Collins, USA
  • T. Czárán, HUN
  • E. Feoli, ITA
  • N. Kenkel, CAN
  • J. Lepš, CZE
  • S. Mazzoleni, ITA
  • Cs. Moskát, HUN
  • B. Oborny, HUN
  • M.W. Palmer, USA
  • G.P. Patil, USA
  • V. de Patta Pillar, BRA
  • C. Ricotta, ITA
  • Á. Szentesi, HUN

PODANI, JÁNOS
E-mail: podani@ludens.elte.hu


JORDÁN, FERENC
E-mail: jordan.ferenc@gmail.com