View More View Less
  • 1 Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504, 23 rue du Læss, BP 43, F-67034 Strasbourg 2, France
  • | 2 Department of Physical Chemistry and Microreaction Technology, Institute of Physics, Technical University of Ilmenau, Weimarer Straße 32, PF 100565, D-98684 Ilmenau, Germany
  • | 3 Institut Charles Sadron (ICS), CNRS UPR 22, Université de Strasbourg, 23 rue Læss, F-67083 Strasbourg, France
  • | 4 Groupe d'Intensification et d'Intégration des Procédés Polymères (G2IP), Institut de Chimie et Procédés pour l?Énergie, l?Environnement et la Santé (ICPEES)-UMR 7515 CNRS, École Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 rue Becquerel, F-67087 Strasbourg, France
Open access

This paper presents a new route to the synthesis of uniform and size-controlled inorganic/organic composite microparticles by means of microreaction technology. Au-nanoparticles in the range of 3 to 14 nm are synthesized by reduction of tetrachloroauric acid, while ZnO-nanoparticles (200–2000 nm) are synthesized in a continuous-flow two-step process using microtube arrangements for microsegmented flow. Both inorganic nanoparticles have a well-controlled size and narrow size distribution. Upon surface modification, the nanoparticles are then mixed on one hand with an acrylate-based monomer and, on the other hand, with an aqueous solution of acrylamide. Both solutions were then emulsified into uniform core-shell droplets by means of a capillary-based microfluidic device. Droplet's shell was hardened through UV-induced polymerization, whereas the core led to a hydrogel upon thermal-induced polymerization. Core-shell polymer microparticles (200–300 µm) with inorganic nanoparticles selectively incorporated into the core and the shell are thus obtained as proven by extensive morphological characterizations using electronic and optical microscopies.

  • 1. Chang, Z.; Serra, C. A.; Bouquey, M.; Kraus, I.; Li, S.; Köhler, J. M. Nanotechnology, 2010, 21, 015605.

  • 2. Cottam, B. F.; Krishnadasan, S.; DeMello, A. J.; DeMello, J. C.; Shaffer, M. S. P. Lab. Chip. 2007 167–169.

  • 3. Donnet, M.; Jongen, N.; Lemaitre, J.; Bowen, P. J. Mat. Sci. Lett. 2000, 19, 749750.

  • 4. Guillemet-Fritsch, S.; Aoun-Habbache, S.; Sarrias, J.; Rousset, A.; Jongen, N.; Donnet, M.; Bowen, P.; Lemaitre J. Solid State Ionics 2004, 171, 135140.

    • Search Google Scholar
    • Export Citation
  • 5. Winterton, J. D.; Myers, D. R.; Lippmann, J. M.; Pisano, A. P.; Doyle, F. M. J. Nanopart. Res. 2008, 10, 893905.

  • 6. Wagner, J.; Köhler, J. M. Nano Lett. 2005, 5, 685691.

  • 7. Weng, C.-H. ; Huang, C.-C.; Yeh, C.-S.; Lei, H-Y.; Lee, G.-B. J. Micromech. Microengn. 2008, 18, 035019.

  • 8. Cabeza, V. S.; Kuhn, S.; Kulkarni, A. A.; Jensen, K. F. Langmuir 2012, 28, 70077013.

  • 9. Knauer, A.; Thete, A.; Li, S.; Romanus, H.; Csaki, A.; Fritzsche, W.; Köhler, J. M. Chem. Eng. J. 2011, 116, 11641169.

  • 10. Knauer, A.; Csaki, A.; Möller, F.; Hühn, C.; Fritzsche, W.; Köhler, J. M. J. Phys. Chem. 2012, 116, 92519258.

  • 11. Gross, G. A.; Hamann, C.; Günther, M.; Köhler, J. M. Chem. Eng. Technol. 2007, 30, 341346.

  • 12. Köhler, J. M.; Kraus, I.; Faerber, J.; Serra, Ch. J. Mat. Sci. 2013, 48, 21582166.

  • 13. Köhler, J. M.; März, A.; Popp, J.; Knauer, A.; Kraus, I.; Faerber, J.; Serra, C. Anal. Chem. 2013, 85, 313318.

  • 14. Link, S.; Wang, Z. L.; El-Sayed, M. A. J. Phys. Chem. 1999, B103, 35293533.

  • 15. Moskovits, M.; Smova-Sloufova, I; Vlcková, B. J. Chem. Phys. 2002, 116, 1043510446.

  • 16. Rodriguez-González, B.; Burrows, A.; Wanatabe, M.; Kiely, C. J.; Liz Marzán, L. M. J. Mat. Chem. 2005, 15, 17551759.

  • 17. Teh, S.-Y. ; Lin, R.; Hung, L.-H.; Lee, A. P. Lab Chip 2008, 8, 198220.

  • 18. Aoki, N.; Mae, K. Chem. Eng. J. 2006, 118, 189197.

  • 19. Köhler, J. M.; Held, M.; Hübner, U.; Wagner, J. Chem. Eng. Tech. 2007, 30, 347354.

  • 20. Li, S.; Günther, P. M.; Köhler, J. M. J. Chem. Eng. 2009, 42, 338345.

  • 21. Serra, C.; Chang, Z. Chem. Eng. Tech. 2008, 31, 10991115.

  • 22. Serra, C.; Berton, N.; Bouquey, M.; Prat, L.; Hadziioannou, G. Langmuir 2007, 23, 77457750.

  • 23. Sawyer, L. C.; Grubb, D. T. Polymer microscopy; Chapman and Hall, London, UK, 1996.

  • 24. Jönsson, J.-E. ; Karlsson, O. J.; Hassender, H.; Törnell, B. Eur. Poly. J. 2007, 43, 13221332.

  • 25. Kirner, T.; Albert, J.; Günther, M.; Mayer, G.; Reinhäckel, K.; Köhler, J. M. Chem. Eng. J. 2004, 101, 6574.

  • 26. Köhler, J. M.; Wagner, J.; Albert, J. J. Mat. Chem. 2005, 15, 19241930.

  • 27. Polte, J.; Ahner, T.; Delissen, F.; et al. J. Am. Chem. Soc. 2010, 132, 12961301.

  • 28. Li, S.; Meierott, S.; Köhler, J. M. Chem. Eng. J. 2010, 165, 958965.

  • 29. Köhler, J. M.; Li, S.; Knauer, A. Chem. Eng. Technol. 2013, 36, 887899.

  • 30. Chang, Z.; Serra, C.; Bouquey, M.; Prat, L.; Hadziioannou, G. Lab. Chip. 2009, 9, 30073011.

  • 31. Yobas, L.; Martens, S.; Ong, W. L.; Ranganathan, N. Lab. Chip. 2006, 6, 10731079.

Manuscript Submission: HERE

  • Impact Factor (2019): 3.622
  • Scimago Journal Rank (2019): 0.795
  • SJR Hirsch-Index (2019): 20
  • SJR Quartile Score (2019): Q1 Chemistry (miscellenous)
  • SJR Quartile Score (2019): Q1 Fluid Flow and Transfer Processes
  • SJR Quartile Score (2019): Q2 Organic Chemistry
  • Impact Factor (2018): 2.277
  • Scimago Journal Rank (2018): 0.58
  • SJR Hirsch-Index (2018): 17
  • SJR Quartile Score (2018): Q1 Fluid Flow and Transfer Processes
  • SJR Quartile Score (2018): Q2 Organic Chemistry

Journal of Flow Chemistry
Language English
Size A4
Year of
Foundation
2011
Volumes
per Year
1
Issues
per Year
4
Founder Áramlásos Kémiai Tudományos Társaság
Founder's
Address
H-1031 Budapest, Hungary Záhony utca 7.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-249X (Print)
ISSN 2063-0212 (Online)