View More View Less
  • 1 University of Southampton Chemistry Southampton SO17 1 BJ UK
Open access

In order for microflow electrolysis cells to make their full contribution to routine laboratory organic synthesis, they must be capable of carrying out reactions with good selectivity and high conversion at a high rate of conversion. In addition to appropriate choice of the electrolysis medium and control of the overall cell chemistry, both the design of the electrolysis cell (including materials of construction) and the correct selection of the cell current and flow rate of the solution are critical in determining performance. The conclusions are tested using the methoxylation of N-formylpyrrolidine as the test reaction in a microflow electrolysis cell with a single, long, patterned flow channel.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • (a) Watts, P.; Haswell, S. J. Chem. Soc. Rev. 2005, 34, 235â€"246; (b) Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300â€"2318; (c) Fukuyama, T.; Rahman, T.; Sato M.; Ryu, I. Synlett 2008, 151â€"163; (d) Yoshida, J. Flash Chemistry: Fast Organic Synthesis in Microsystems; Wiley-VCH: Weinheim, 2008; (e) Chemical Reactions and Processes under Flow Conditions; Luis S. V.; Garcia-Verdugo, E., Eds.; Royal Society of Chemistry: Cambridge, UK, 2009; (f) Microreactors in Organic Synthesis and Catalysis, edition 2; Wirth, T., Ed; Wiley-VCH: Weinheim, 2013; (g) Microreactors in Preparative Chemistry; Reschetilowski, W., Ed.; Wiley-VCH: Weinheim, 2013; (h) Watts, K.; Baker A.; Wirth, T. J. Flow Chem. 2014, 4, 2â€"11.

  • (a) Yoshida, J. Chem. Commun. 2005, 4509â€"4516; (b) Horii, D.; Atobe, M.; Fuchigami T.; Marken, F. J. Electrochem. Soc. 2006, 156, D143â€"D147; (c) Saito, K.; Ueoka, K.; Matsumoto, K.; Suga, S.; Nokami T.; Yoshida, J. Angew. Chem., Int. Ed. 2011, 50, 5153â€"5156; (d) Attour, A.; Dirrenberger, P.; Rode, S.; Ziogas, A.; Matlosz M.; Lapique, F. Chem. Eng. Sci. 2011, 66, 480â€"489; (e) Kupper, M., Hessel, V.; Lowe, H.; Stark, W.; Kinkel, J.; Michel, M.; Schmidt-Traub, H. Electrochim. Acta. 2003, 48, 2889â€"2896; (f) Simms, R.; Dubinsky, S.; Yudin, A.; Kumasheva, E. Lab. Chip. 2009, 9, 2395â€"2397; (g) Ziogas, A.; Kolb, G.; O'Connell, M.; Attour, A.; Lapicque, F.; Matlosz M.; Rode, S. J. Appl. Electrochem. 2009, 39, 2297â€"2313; (h) Bouzek, K.; JiÅ(tm)ičnÃ1/2, V.; KodÃ1/2m, R.; KÅ(tm)išťál, J.; Bystroň, T. Electrochim. Acta. 2010, 55, 8172â€"8181; (i) Kashiwagi, T.; Amemiya, F.; Fuchigami, T.; Atobe, M.; Chem. Commun. 2012, 48, 2806â€"2808; (j) Kuleshova, J.; Hill-Cousins, J. T.; Birkin, P. R.; Brown, R. C. D.; Pletcher, D.; Underwood, T. J. Electrochim. Acta. 2011, 56, 4322â€"4326.

  • Kuleshova, J.; Hill-Cousins, J. T.; Birkin, P. R.; Brown, R. C. D.; Pletcher, D.; Underwood, T. J. Electrochim. Acta. 2012, 69, 197â€"202.

  • Roth, G. P.; Stalder, R.; Long, T. R.; Sauer D. R.; Djuric. S. W. J. Flow Chem. 2013, 3, 34â€"40.

  • Stalder, R.; Roth, G. P. Med. Chem. Lett. 2013, 4, 1119â€"1123.

  • Steckhan, E.; Arns, T.; Heineman, W. R.; Hilt, G.; Hoormann, D.; Jörissen, J.; Kröner, L.; Lewall, B.; PÃ1/4tter. H. Chemosphere 2001, 43, 63â€"73.

  • Paddon, C. A.; Atobe, M.; Fuchigami, T.; He, P.; Watts, P.; Haswell, S. J.; Pritchard, G. T.; Bull S. D.; Marken, F. J. Appl. Electrochem. 2006, 36, 617â€"634.

  • (a) Bard A. J.; Faulkner, L. R. Electrochemical Methods â€" Fundamentals and Applications; John Wiley & Sons: New York, 2001; (b) Walsh, F. C. A First Course in Electrochemical Engineering; The Electrochemistry Consultancy, 1993; (c) Pletcher D.; Walsh, F. C. Industrial Electrochemistry, edition 2; Chapman and Hall: London, 1990.

  • Scialdone, O.; Guarisco, C.; Galia, A. Electrochim. Acta 2011, 58, 463â€"373.