View More View Less
  • 1 University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
  • 2 Xellia Ltd., Slavonska avenija 24/6, HR-10 000 Zagreb, Croatia
  • 3 University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
  • 4 University of Zagreb, Bijenička cesta 32, HR-10000 Zagreb, Croatia
Restricted access

In this study, magnetic nanoparticles (MNPs) of maghemite (γ-Fe2O3) were synthesized and characterized. The method of multifactor experimental design and evolutionary operation (EVOP) was used to optimize immobilization of the alcohol dehydrogenase (ADH) enzyme on MNPs. Optimal operating conditions for the immobilization process were determined (γADH = 0.08 mg/mL, 2% glutaraldehyde for surface activation, t = 28 h), and in such conditions, a specific activity of S.A. = 118 ± 6 U/mg and immobilization efficiency of η = 84.97 ± 3.67% were achieved. Compared to the native enzyme, ADH immobilized on MNPs retained 66.45 ± 3.66% of the initial activity. ADH immobilized on MNPs at optimal conditions was used as a biocatalyst for model reaction—NADH oxidation. NADH oxidation was performed in two different magnetic microreactor configurations: (1) microreactor equipped with permanent square magnets and (2) microreactor equipped with an electromagnet and an oscillating magnetic field that enables magnetic particles movement in the microreactor. In the system with the oscillating magnetic field, equal conversion (X = 100%) was achieved in 2-fold shorter residence time.

  • 1.

    Wörz, O.; Jäckel. K. P.; Richter, T.; Wolf, A. Chem. Eng. Technol. 2001, 24, 138143.

  • 2.

    Ehrfeld, W.; Hessel, V.; Löwe, H. Microreactors: New Technology for Modern Chemistry; Wiley-VCH: Weinheim, 2000, 112.

  • 3.

    Doku, G. N.; Verboom, W.; Reinhoudt, D. N.; van der Berg, A. Tetrahedron 2005, 61, 27332742.

  • 4.

    Hessel, V.; Tibhe, J.; Noël, T.; Wang, Q. Chem. Biochem. Eng. Q 2014, 28, 167188.

  • 5.

    Prodan, D.; Grecu, V. V.; Grecu, M. N.; Tronc, E.; Jolivet, J. P. Meas. Sci. Technol. 1999, 10, 4143.

  • 6.

    Lu, A. H.; Salabas, E. L.; Schüth, F. Angew. Chem., Int. Ed. 2007, 46, 12221244.

  • 7.

    Xiong, Y.; Ye, J.; Gu, X.; Chen, Q. J. Magn. Magn. Mater. 2008, 320, 107112.

  • 8.

    Drbohlavova, J.; Hrdy, R.; Adam, V.; Kizek, R.; Schneeweiss, O.; Hubalek, J. Sensors 2009, 9, 23522362.

  • 9.

    Zhao, Y.; Qiu, Z.; Huang, J. Chin. J. Chem. Eng. 2008, 16, 451455.

  • 10.

    Moghimi, S. M.; Hunter, A. C. H.; Murray, J. C. Pharm. Rev. 2001, 53, 283318.

  • 11.

    Halling, P.J.; Dunnill, P. Enzyme Microb. Tech. 1980, 2, 210.

  • 12.

    Johnson, P. A.; Park, H. J.; Driscoll, A. J. Methods Mol. Biol. 2011, 679, 183191.

  • 13.

    Liao, M. H.; Chen, D. H. Biotechnol. Lett. 2001, 23, 17231727.

  • 14.

    Shinkai, M.; Honda, H.; Kobayashi, T. Biocatalysis 1991, 15, 6169.

  • 15.

    Li, G. Y.; Huang, K. L.; Jiang, Y. R.; Yang, D. L.; Ding, P. Int. J. Biol. Macromol. 2008, 42, 405412.

  • 16.

    Goldberg, K.; Krueger, A.; Meinhardt, T.; Kroutil, W.; Mautner, B.; Liese, A. Tetrahedron: Asymmetry 2008, 19, 11711173.

  • 17.

    Kang, S.; Jo, Y.; Bak, J.; Kim, K.; Kim, Y. J. J. Nanosci. Nanotechno. 2007, 7, 37063708.

  • 18.

    Pamme, N.; Manz, A. Anal. Chem. 2004, 76, 72507256.

  • 19.

    Šalic, A.; Zelic, B. RSC Adv. 2014, 4, 4171441721.

  • 20.

    Šalic, A.; Pindric, K.; Hojnik Podrepšek, G.; Leitgeb, M.; Zelic, B. Green Process. Synth. 2013, 2, 569578.

  • 21.

    Sheldon, R. A.; Schoevaart, R.; van Langen, L. M. Biocatal. Biotransform. 2005, 23, 141147.

  • 22.

    Šulek, F.; Drofenik, M.; Habulin, M.; Knez, Ž. J. Magn. Magn. Mater. 2010, 322, 179185.

  • 23.

    Šulek, F.; Knez, Ž.; Habulin, M. Appl. Surf. Sci. 2010, 256, 45964600.

  • 24.

    Banerjee, R.; Bhattacharyya, B. C. Biochem. Eng. J. 2003, 13, 149155.

  • 25.

    Kar, B.; Banerjee, R.; Bhattacharyya, B. C. Process Biochem. 2002, 37, 13951401.

  • 26.

    Negi, S.; Banerjee, R. Food Technol. Biotechnol. 2004, 44, 257261.

  • 27.

    Clesceri, L. S.; Greenberg, A. E.; Eaton, A. D. Standard Methods for the Examination of Water and Wastewater, 20th edn.; Washington: American Public Health Association, 1998, pp. 375.

    • Search Google Scholar
    • Export Citation
  • 28.

    Vrsalovic Presecki, A.; Vasic-Racki, Ð. Process Biochem. 2009, 44, 5461.

  • 29.

    Šalic, A.; Faletar, P.; Zelic, B. Biochem. Eng. J. 2013, 77, 8896.

  • 30.

    Pandya, P. H.; Jarsa, R. V.; Newalkar, B. L.; Bhalt, P. N. Micropor. Mesopor. Mat. 2005, 77, 6777.

  • 31.

    Mustapic, M.; Pajic, D.; Novosel, N.; Babic, E.; Zadro, K.; Cindric, M.; Horvat, J.; Skoko, Ž.; Bijleic, M.; Shcherbakov, A. Croat. Chem. Acta. 2010, 83, 275282.

    • Search Google Scholar
    • Export Citation
  • 32.

    Derks, R.; Dietzel, A.;Wimberger-Friedl, R.; Prins, M. Microfluid. Nanofluid. 2007, 3, 141149.

  • 33.

    Levenspiel, O. Chemical Reaction Engineering, 3rd edn.; Wiley: New York, 1999.

  • 34.

    van't Riet, K.; Tramper, J. Basic Reactor Design; Marcel Dekker: New York, 1991.

  • 35.

    Findrik, Z.; Vrsalovic Presecki, A.; Vasic-Racki, Ð. Bioprocess. Biosyst. Eng. 2010, 33, 299307.