View More View Less
  • 1 University College London, Torrington Place, London WC1E 7JE, UK
  • 2 UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
  • 3 University College London, Gower Street, London WC1E 6BT, UK

Synthesis of silver nanoparticles (NPs) in an impinging jet reactor (IJR) was investigated due to its unique properties of efficient mixing and lack of channel walls which avoid fouling. Silver NPs were formed at room temperature by reducing silver nitrate with sodium borohydride in the presence of sodium hydroxide. Two types of ligand were used to stabilize the NPs, trisodium citrate, and polyvinyl alcohol (PVA). Weber number, the ratio between inertial forces and surface tension forces, is used to characterize flow in impinging jets. Flow regimes were investigated forWeber numbers in the range of 13–176. A liquid sheet/chain regime was identified at lowerWeber numbers (<90), and an unstable rim structure was identified at higherWeber numbers (>90). Mixing time was found to be in the range 1–7ms, using theVillermaux—Dushman reaction system and interaction by exchange with the mean mixing (IEM) model. Fastest mixing occurred at Weber number ca. 90. Using trisodium citrate as a ligand, NP size decreased from 7.9 ± 5.8 nm to 3.4 ± 1.4 nm when flow rate was increased from 32 mL/min to 72 mL/min using 0.5 mm jets, and from 6.4 ± 3.4 nm to 5.1 ± 4.6 nm when flow rate was increased from 20 mL/min to 32 mL/min using 0.25 mm jets. Using PVA as a ligand, NP size decreased from 5.4 ± 1.6 nm to 4.2 ± 1.1 nm using 0.5 mm jets and stayed relatively constant between 4.3 ± 1 nm and 4.7 ± 1.3 nm using 0.25 mm jets. In general, the size of the NPs decreased when mixing was faster.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Supplementary Materials