View More View Less
  • 1 Department of Physics, Mechanical and Civil Engineering Laboratory, Faculty of Sciences and Technology, University Abdelmalek Essaadi, Tangier, Morocco
  • | 2 Department STIC, Communication Systems and Detection Laboratory, National School of Applied Sciences, University Abdelmalek Essaadi, Tetouan, Morocco
Open access

This work was dedicated to assessing reliability of slope stability in earthen dams following rapid drawdown. Modeling of the problem physics was based on saturated-unsaturated seepage flow through the nonlinear Richards equation, under the assumption of two-dimensional approximation in steady state and transient state. The modeling of seepage taking place inside the earth dam infill materials included soil parameters, the negative pore water pressure-hydraulic conductivity relationship as well as the negative pore water pressure-volumetric water content. Slope stability was analyzed by using safety factor as evaluated by the Bishop's simplified method. Solution of the governing equations in terms of pore water pressure and fluid flow velocity was performed by using the modules SEEP/W and SLOPE/W of the Finite Element based software package GeoStudio. The drawdown phenomenon was then analyzed and its influence on dam stability assessed by using surface response method and Monte Carlo simulation. A design formula was proposed in order to bound the probability of failure associated to slope stability.

  • [1]

    Lemacha H. , Maslouhi A., Razack M. (2017), Modeling of transient two dimensional flow in saturated-unsaturated porous media. European Scientific Journal, 13, 195213.

    • Search Google Scholar
    • Export Citation
  • [2]

    Botos M. L. (2014), Study of seepage for small homogeneous earth dams. Applied Numerical Mathematics and Scientific Computation, Proceedings of the 1st International Conference on Civil Engineering, Water Resources, Hydraulics & Hydrology (CEWHH 2014), Atena, Greece, November 2830, pp. 142146.

    • Search Google Scholar
    • Export Citation
  • [3]

    Mao D. , Yeh T.-C. J., Wan L., Hsu K.-C., Lee C.-H., Wen J.-C. (2013), Necessary conditions for inverse modeling of flow through variably saturated porous media. Advances in Water Resources, 52, 5061.

    • Search Google Scholar
    • Export Citation
  • [4]

    Andreea C. (2016), Unsaturated slope stability and seepage analysis of a dam. Energy Procedia, 85, 9398.

  • [5]

    van Genuchten M. T. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892898.

    • Search Google Scholar
    • Export Citation
  • [6]

    Tan X. , Wang X., Khoshnevisan S., Hou X., Zha F. (2017), Seepage analysis of earth dams considering spatial variability of hydraulic parameters. Engineering Geology, 228, 260269.

    • Search Google Scholar
    • Export Citation
  • [7]

    Wang F. , Dai Z., Okeke C. A. U., Mitani Y., Yang H. (2018), Experimental study to identify premonitory factors of landslide dam failures. Engineering Geology, 232, 123134.

    • Search Google Scholar
    • Export Citation
  • [8]

    Athani S. S. , Shivamanth, Solanki C. H., Dodagoudar G. R. (2015), Seepage and stability analyses of earth dam using finite element method. Aquatic Procedia, 4, 876883.

    • Search Google Scholar
    • Export Citation
  • [9]

    Johari A. , Lari A. M. (2016), System probabilistic model of rock slope stability considering correlated failure modes. Comput. Geotech., 81, 2638.

    • Search Google Scholar
    • Export Citation
  • [10]

    Li D. S. , Zhenga D., Cao Z. J., Tang X. S., Phoon K. K. (2013), Response surface methods for slope reliability analysis: Review and comparison. Engineering Geology, 203, 314.

    • Search Google Scholar
    • Export Citation
  • [11]

    Zhang J. , Huang H. W., Juang C. H., Li D. Q. (2013), Extension of Hassan and Wolff method for system reliability analysis of soil slopes. Engineering Geology, 160, 8188.

    • Search Google Scholar
    • Export Citation
  • [12]

    Jiang S. H. , Li D. Q., Cao Z. J., Zhou C. B., Phoon K. K. (2015), Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation. J. Geotech. Geoenviron., 141, 04014096.

    • Search Google Scholar
    • Export Citation
  • [13]

    Low B. K. (2014), FORM, SORM, and spatial modeling in geotechnical engineering. Structural Safety, 49, 5664.

  • [14]

    Wang Y. (2012), Uncertain parameter sensitivity in Monte Carlo simulation by sample reassembling. Comput. Geotech., 46, 3947.

  • [15]

    GeoStudio. Headquartered in Calgary, Alberta, Canada. https://www.geoslope.com/

  • [16]

    Mualem Y. (1976), A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513522.

    • Search Google Scholar
    • Export Citation
  • [17]

    Fredlund D. G. , Rahardjo H. (1993), Soil mechanics for unsaturated soils, John Wiley & sons, Inc., New York, USA, pp. 3863.

  • [18]

    Bishop A. W. , Morgenstern N. (1960), Stability coefficients for earth slopes. Géotechnique, 10, 129153.

  • [19]

    Spencer E. (1967), A method of analysis of the stability of embankments assuming parallel inter-slice forces. Géotechnique, 17, 1126.

    • Search Google Scholar
    • Export Citation
  • [20]

    Ma H. , Chi F. (2016), Major technologies for safe construction of high earth-rockfill dams. Engineering, 2, 498509.

  • [21]

    Zienkiewicz O. C. , Taylor R. L. (1967), The Finite Element Method; Volumes I, II, 5th Edition, McGraw Hill, New York.

  • [22]

    Freeze R. A. (1971), Three-dimensional, transient, saturated-unsaturated flow in a groundwater basin. Water Resour. Res., 7, 347366.

    • Search Google Scholar
    • Export Citation
  • [23]

    Gayton N. , Bourinet J., Lemaire M. (2003), CQ2RS: A new statically approach to response surface method for reliability analysis. Journal of Structural Safety, 25, 99121.

    • Search Google Scholar
    • Export Citation
  • [24]

    Wang Y. Q. , Shao M. A., Han X. W., Liu Z. P. (2015), Spatial variability of soil parameters of the van Genuchten model at a regional scale. Clean Air Water, 43, 271278.

    • Search Google Scholar
    • Export Citation
  • [25]

    Phoon K. K. , Santoso A., Quek S. T. (2010), Probabilistic analysis of soil-water characteristic curves. J. Geotech. Geoenviron., 136, 445455.

    • Search Google Scholar
    • Export Citation
  • [26]

    Marsaglia G. (2013), XorShift RNG's. Journal of Statistical Software, 8, 16.

The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 2 10
Mar 2021 0 17 27
Apr 2021 0 15 14
May 2021 0 10 28
Jun 2021 0 4 26
Jul 2021 0 14 27
Aug 2021 0 0 0