Authors:
A. Farooq Bright Trading & Contracting Co., Ltd., Makkah, Kingdom of Saudi Arabia

Search for other papers by A. Farooq in
Current site
Google Scholar
PubMed
Close
and
R. Aftab Federal Urdu University of Arts, Science & Technology, Islamabad, Pakistan

Search for other papers by R. Aftab in
Current site
Google Scholar
PubMed
Close
Open access

The world is running out of the oil and natural resources with each passing day. Most of the electricity around the world is generated using natural resources. E-governments are trying to move the electricity production from natural resources to hydro and solar generation. For the places such as in the Middle East and deserted areas in Sindh district of Pakistan, where water resources are low and solar is superlative for generating electrical energy. The objective of this research is to implement, model, design and simulate the Photovoltaic Solar Monitoring (PVSM) systems. The simulation for the system is implemented on LabVIEW software and tests are carried out for certain values of input. All the details, expected outcomes, problems, and results are part of this research.

The scope of this research is to obtain the results using real-time simulations performed in LabVIEW. The simulation performed in LabVIEW mimics the implementation of the advanced automation and control system technique Supervisory control and data acquisition (SCADA). The objective of this research work is to perform the essential simulation that is required to investigate current products for PV factors monitoring that influence solar panels efficiency. The goals are: to design and to develop a system for monitoring the PV solar systems using LabVIEW, to simulate the performance of PV solar system using the theoretical methods, to monitor system by means of LabVIEW and to show theoretical effects in the method of the curve of PV performance parameters. Implementing the interfacing technique at home level to monitor the local solar parameters helps in utilizing the solar generated energy in an efficient way. Analysis in LabVIEW helps in studying the parametric condition of the environment where solar is required to be installed.

  • [4]

    Spanias A. S. (2017), Solar energy management as an Internet of Things (IoT) application. In: 8th International Conference on Information, Intelligence, Systems & Applications (IISA), Larnaca, Cyprus, pp. 14.

    • Search Google Scholar
    • Export Citation
  • [5]

    Hollingum J. (2001), Solar energy conversion. Sensor Review, 21 (2).

  • [6]

    Kumar Pathania A. , Goyal B., Raj Saini J. (2017), Diffusion of adoption of solar energy – a structural model analysis. Smart and Sustainable Built Environment, 6 (2), 6683.

    • Search Google Scholar
    • Export Citation
  • [7]

    Ishay J. S. , Rosenzweig E., Litinetsky L., Kirshboim S. (2000), The solar cell in hornet cuticle: nanometer to micrometer scale. Microscopy, 49 (4), 559568.

    • Search Google Scholar
    • Export Citation
  • [8]

    Arefifar S. A. , Ordonez M., Mohamed Y. (2017), Energy management in multi-microgrid systems – development and assessment. In: IEEE Power & Energy Society General Meeting, Chicago, IL, p. 1.

    • Search Google Scholar
    • Export Citation
  • [9]

    (1998), Labview Graphical Programming (2nd edition). Industrial Robot: An International Journal, 25 (3).

  • [10]

    (2002), National Instruments LabVIEW-based distributed I/O system delivers intelligent networked measurement and control. Sensor Review, 22 (1).

    • Search Google Scholar
    • Export Citation
  • [11]

    Haokip S. G. T. , Shah G., Lahiri U. (2017), Psycho-physiological implications of computer based social and non-social interactive tasks for children with autism. In: 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Delhi, pp. 17.

    • Search Google Scholar
    • Export Citation
  • [12]

    Sharma P. , Duttagupta S. P., Agarwal V. (2009), Characterization and modeling of flexible photovoltaic modules for portable power applications. In: International Conference on Sustainable Power Generation and Supply, Nanjing, pp. 17.

    • Search Google Scholar
    • Export Citation
  • [13]

    Farooq A. , Zahid A. (2018), SCADA Based Control of Plant CS40000 Advanced Process Laboratorial Equipment. International Journal of Trend in Research and Development (IJTRD), 5 (2), ISSN: 2394-9333.

    • Search Google Scholar
    • Export Citation
  • [14]

    Farooq A. , Alhalabi W., Alahmadi S. M. (2017), Traffic systems in smart cities using LabVIEW. Journal of Science and Technology Policy Management.

    • Search Google Scholar
    • Export Citation
  • [15]

    Procel P. , Ingenito A., De Rose R., Pierro S., Crupi F., Lanuzza M., Cocorullo G., Isabella O., Zeman M. (2017), Opto-electrical modelling and optimization study of a novel IBC c-Si solar cell. Prog. Photovolt: Res. Appl., 25, 452469.

    • Search Google Scholar
    • Export Citation
  • [16]

    Ammous M. , Fendri D., Chaabene M. (2017), Dynamic modeling and LabVIEW simulation of a photovoltaic thermal collector. In: 8th International Renewable Energy Congress (IREC), Amman, pp. 16.

    • Search Google Scholar
    • Export Citation
  • [17]

    Rafael da Silva M. (2016), Modeling of a fuel cell with PI controller in Simulink – Matlab. In: 3rd International Conference on Systems and Informatics (ICSAI), Shanghai, pp. 160165.

    • Search Google Scholar
    • Export Citation
  • [18]

    Masters G. M. (2005), Photovoltaic Systems. In: Renewable and Efficient Electric Power Systems, Masters G. M. (ed.)

  • [19]

    van der Ham A. J. , Roes M. G. L. (2017), A distributed maximum power point tracking system for solar electric vehicles. In: 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), Warsaw, pp. P.1P.10.

    • Search Google Scholar
    • Export Citation
  • [20]

    Basu T. S. , Maiti S., Chakraborty C. (2016), A hybrid modular multilevel converter for solar power integration. In: IEEE 7th Power India International Conference (PIICON), Bikaner, pp. 16.

    • Search Google Scholar
    • Export Citation
  • [21]

    Singh A. K. , Hussain I., Singh B. (2016), An improved P&O MPPT algorithm for single stage three-phase grid integrated solar PV system. In: IEEE 7th Power India International Conference (PIICON), Bikaner, pp. 16.

    • Search Google Scholar
    • Export Citation
  • [22]

    Yusof M. F. M. , Yusof N. S., Ahmad A. Z. (2017), An analytical strategy for energy storage sizing in isolated microgrid with PV source. In: IEEE Conference on Systems, Process and Control (ICSPC), Malaysia, pp. 122127.

    • Search Google Scholar
    • Export Citation
  • [23]

    Datta S. K. , Bonnet C., Nikaein N. (2014), Personalized power saving profiles generation analyzing smart device usage patterns. In: 7th IFIP Wireless and Mobile Networking Conference (WMNC), Vilamoura, pp. 18.

    • Search Google Scholar
    • Export Citation
  • [24]

    Colak I. , Demirtas M., Kabalci E. (2014), Design, optimisation and application of a resonant DC link inverter for solar energy systems. International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 33 (5), 17611776.

    • Search Google Scholar
    • Export Citation
  • [25]

    Raja Mohamed S. , Jeyanthy P. A., Devaraj D. (2017), Investigation on the impact of high-penetration of PV generation on transient stability. In: IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Srivilliputhur, pp. 16.

    • Search Google Scholar
    • Export Citation
  • [26]

    Alessandro V. , Di Napoli F., Guerriero P., Daliento S. (2014), A novel circuit model of PV cell for electrothermal simulations. In: IET Conference Proceedings, p. 7.3.4.

    • Search Google Scholar
    • Export Citation
  • [27]

    Bhagavathy S. , Pearsall N., Putrus G., Walker S. (2017), Performance assessment of a three-phase distribution network with multiple residential single-phase PV systems. CIRED – Open Access Proceedings Journal, 2017 (1), pp. 24802483.

    • Search Google Scholar
    • Export Citation
  • [28]

    Katiraei F. , Mauch K., Dignard-Bailey L. (2007), Integration of photovoltaic power systems in high-penetration clusters for distribution networks and mini-grids. Int. J. Distrib. Energy Res., 3 (3), 207223.

    • Search Google Scholar
    • Export Citation
  • [29]

    Vasanasong E. , Spooner E. D. (2000), The prediction of net harmonic currents produced by large numbers of residential PV inverters: Sydney Olympic village case study. In: Proceedings of Ninth International Conference on Harmonics and Quality of Power, IEEE, pp. 116121.

    • Search Google Scholar
    • Export Citation
  • [30]

    Luo X. , Wang J., Dooner M., Clarke J. (2015), Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511536.

    • Search Google Scholar
    • Export Citation
  • [31]

    Hashemi Toghroljerdi S. , Ostergaard J., Yang G. (2013), Effect of reactive power management of PV inverters on need for energy storage. In: 39th IEEE Photovoltaic Specialists Conf.

    • Search Google Scholar
    • Export Citation
  • [32]

    Lin J. H. , et al. (2018), A high-efficiency and fast-transient digital-low-dropout regulator with the burst mode corresponding to the power-saving modes of DC-DC switching converters. In: IEEE International Solid – State Circuits Conference – (ISSCC), San Francisco, CA, USA, pp. 314316.

    • Search Google Scholar
    • Export Citation
  • [33]

    Kuitche J. M. , Pan R., Tamizh Mani G., (2012), Statistical analysis of back surface vs. cell temperatures of c-Si modules using measurement error models. In: 38th IEEE Photovoltaic Specialists Conference, Austin, TX, pp. 002953002956.

    • Search Google Scholar
    • Export Citation
  • [34]

    Kuitche J. , Oh J., Brunger A., Inoue T., Muller M., Bauerdick C., Althaus J., Kiehn S., Feng V., Therhaag U., Struwe R. (2011), One year NOCT round-robin testing per IEC 61215 standard. In: 37th IEEE PVSC, Seatle, WA.

    • Search Google Scholar
    • Export Citation
  • [35]

    Hasan M. N. , Habib M. M., Matin M. A., Amin N. (2017), Modeling of high efficient perovskite-Si tandem solar cell. In: 3rd International Conference on Electrical Information and Communication Technology (EICT), Khulna, pp. 15.

    • Search Google Scholar
    • Export Citation
  • [36]

    Cheng Z. , Delahoy A. E., Su Z., Chin K. K. (2014), Steady state minority carrier lifetime and defect level occupation in thin film CdTe solar cells. Thin Solid Films, 558, 391399, ISSN 0040-6090.

    • Search Google Scholar
    • Export Citation
  • [37]

    Lechene B. P. , Clerc R., Arias A. C. (2017), Theoretical analysis and characterization of the energy conversion and storage efficiency of photo-supercapacitors. Solar Energy Materials and Solar Cells, 172, 202212, ISSN 0927-0248.

    • Search Google Scholar
    • Export Citation
  • [38]

    Cui Z. , Tian Z., Zhang Y., Bi Z., Fu S. (2018), Study on real time 3D imaging of streak tube lidar based on LabVIEW. Optik, 157, 768773, ISSN 0030-4026.

    • Search Google Scholar
    • Export Citation
  • [39]

    Tian Z. , Cui Z., Zhang L., Xu T., Zhang Y., Fu S. (2014), Control and image processing for streak tube imaging lidar based on VB and MATLAB. Chin. Opt. Lett. 12, 060015.

    • Search Google Scholar
    • Export Citation
  • [40]

    Inoue Y. , Uchiyama M. (2017), Development of PLC system with large capacity and high reliability. CIRED – Open Access Proceedings Journal, 2017 (1), 10351037.

    • Search Google Scholar
    • Export Citation
  • [41]

    Morris A. S. , Langari R. (2012), Data Acquisition with LabVIEW – Chapter 5. In: Measurement and Instrumentation, Butterworth-Heinemann, Boston, 115133, ISBN 9780123819604.

    • Search Google Scholar
    • Export Citation
  • [42]

    Leaman C. (2015), The benefits of solar energy. Renewable Energy Focus, 16 (56), 113115, ISSN 1755-0084.

  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Senior editors

Editor-in-Chief: Ákos, LakatosUniversity of Debrecen, Hungary

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár, University of Debrecen, Hungary

Founding Editor: György Csomós, University of Debrecen, Hungary

Associate Editor: Derek Clements Croome, University of Reading, UK

Associate Editor: Dezső Beke, University of Debrecen, Hungary

Editorial Board

  • Mohammad Nazir AHMAD, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia

    Murat BAKIROV, Center for Materials and Lifetime Management Ltd., Moscow, Russia

    Nicolae BALC, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

    Umberto BERARDI, Toronto Metropolitan University, Toronto, Canada

    Ildikó BODNÁR, University of Debrecen, Debrecen, Hungary

    Sándor BODZÁS, University of Debrecen, Debrecen, Hungary

    Fatih Mehmet BOTSALI, Selçuk University, Konya, Turkey

    Samuel BRUNNER, Empa Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland

    István BUDAI, University of Debrecen, Debrecen, Hungary

    Constantin BUNGAU, University of Oradea, Oradea, Romania

    Shanshan CAI, Huazhong University of Science and Technology, Wuhan, China

    Michele De CARLI, University of Padua, Padua, Italy

    Robert CERNY, Czech Technical University in Prague, Prague, Czech Republic

    Erdem CUCE, Recep Tayyip Erdogan University, Rize, Turkey

    György CSOMÓS, University of Debrecen, Debrecen, Hungary

    Tamás CSOKNYAI, Budapest University of Technology and Economics, Budapest, Hungary

    Anna FORMICA, IASI National Research Council, Rome, Italy

    Alexandru GACSADI, University of Oradea, Oradea, Romania

    Eugen Ioan GERGELY, University of Oradea, Oradea, Romania

    Janez GRUM, University of Ljubljana, Ljubljana, Slovenia

    Géza HUSI, University of Debrecen, Debrecen, Hungary

    Ghaleb A. HUSSEINI, American University of Sharjah, Sharjah, United Arab Emirates

    Nikolay IVANOV, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

    Antal JÁRAI, Eötvös Loránd University, Budapest, Hungary

    Gudni JÓHANNESSON, The National Energy Authority of Iceland, Reykjavik, Iceland

    László KAJTÁR, Budapest University of Technology and Economics, Budapest, Hungary

    Ferenc KALMÁR, University of Debrecen, Debrecen, Hungary

    Tünde KALMÁR, University of Debrecen, Debrecen, Hungary

    Milos KALOUSEK, Brno University of Technology, Brno, Czech Republik

    Jan KOCI, Czech Technical University in Prague, Prague, Czech Republic

    Vaclav KOCI, Czech Technical University in Prague, Prague, Czech Republic

    Imre KOCSIS, University of Debrecen, Debrecen, Hungary

    Imre KOVÁCS, University of Debrecen, Debrecen, Hungary

    Angela Daniela LA ROSA, Norwegian University of Science and Technology, Trondheim, Norway

    Éva LOVRA, Univeqrsity of Debrecen, Debrecen, Hungary

    Elena LUCCHI, Eurac Research, Institute for Renewable Energy, Bolzano, Italy

    Tamás MANKOVITS, University of Debrecen, Debrecen, Hungary

    Igor MEDVED, Slovak Technical University in Bratislava, Bratislava, Slovakia

    Ligia MOGA, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

    Marco MOLINARI, Royal Institute of Technology, Stockholm, Sweden

    Henrieta MORAVCIKOVA, Slovak Academy of Sciences, Bratislava, Slovakia

    Phalguni MUKHOPHADYAYA, University of Victoria, Victoria, Canada

    Balázs NAGY, Budapest University of Technology and Economics, Budapest, Hungary

    Husam S. NAJM, Rutgers University, New Brunswick, USA

    Jozsef NYERS, Subotica Tech College of Applied Sciences, Subotica, Serbia

    Bjarne W. OLESEN, Technical University of Denmark, Lyngby, Denmark

    Stefan ONIGA, North University of Baia Mare, Baia Mare, Romania

    Joaquim Norberto PIRES, Universidade de Coimbra, Coimbra, Portugal

    László POKORÁDI, Óbuda University, Budapest, Hungary

    Roman RABENSEIFER, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik

    Mohammad H. A. SALAH, Hashemite University, Zarqua, Jordan

    Dietrich SCHMIDT, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany

    Lorand SZABÓ, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

    Csaba SZÁSZ, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

    Ioan SZÁVA, Transylvania University of Brasov, Brasov, Romania

    Péter SZEMES, University of Debrecen, Debrecen, Hungary

    Edit SZŰCS, University of Debrecen, Debrecen, Hungary

    Radu TARCA, University of Oradea, Oradea, Romania

    Zsolt TIBA, University of Debrecen, Debrecen, Hungary

    László TÓTH, University of Debrecen, Debrecen, Hungary

    László TÖRÖK, University of Debrecen, Debrecen, Hungary

    Anton TRNIK, Constantine the Philosopher University in Nitra, Nitra, Slovakia

    Ibrahim UZMAY, Erciyes University, Kayseri, Turkey

    Tibor VESSELÉNYI, University of Oradea, Oradea, Romania

    Nalinaksh S. VYAS, Indian Institute of Technology, Kanpur, India

    Deborah WHITE, The University of Adelaide, Adelaide, Australia

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • ERIH PLUS
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2022  
Scimago  
Scimago
H-index
9
Scimago
Journal Rank
0.235
Scimago Quartile Score Architecture (Q2)
Engineering (miscellaneous) (Q3)
Environmental Engineering (Q3)
Information Systems (Q4)
Management Science and Operations Research (Q4)
Materials Science (miscellaneous) Q3)
Scopus  
Scopus
Cite Score
1.6
Scopus
CIte Score Rank
Architecture 46/170 (73rd PCTL)
General Engineering 174/302 (42nd PCTL)
Materials Science (miscellaneous) 93/150 (38th PCTL)
Environmental Engineering 123/184 (33rd PCTL)
Management Science and Operations Research 142/198 (28th PCTL)
Information Systems 281/379 (25th PCTL)
 
Scopus
SNIP
0.686

2021  
Scimago  
Scimago
H-index
7
Scimago
Journal Rank
0,199
Scimago Quartile Score Engineering (miscellaneous) (Q3)
Environmental Engineering (Q4)
Information Systems (Q4)
Management Science and Operations Research (Q4)
Materials Science (miscellaneous) (Q4)
Scopus  
Scopus
Cite Score
1,2
Scopus
CIte Score Rank
Architecture 48/149 (Q2)
General Engineering 186/300 (Q3)
Materials Science (miscellaneous) 79/124 (Q3)
Environmental Engineering 118/173 (Q3)
Management Science and Operations Research 141/184 (Q4)
Information Systems 274/353 (Q4)
Scopus
SNIP
0,457

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 0 36 9
Feb 2024 0 101 8
Mar 2024 0 67 9
Apr 2024 0 19 7
May 2024 0 24 6
Jun 2024 0 35 8
Jul 2024 0 0 0