View More View Less
  • 1 Bright Trading & Contracting Co., Ltd., Makkah, Kingdom of Saudi Arabia
  • | 2 Federal Urdu University of Arts, Science & Technology, Islamabad, Pakistan
Open access

The world is running out of the oil and natural resources with each passing day. Most of the electricity around the world is generated using natural resources. E-governments are trying to move the electricity production from natural resources to hydro and solar generation. For the places such as in the Middle East and deserted areas in Sindh district of Pakistan, where water resources are low and solar is superlative for generating electrical energy. The objective of this research is to implement, model, design and simulate the Photovoltaic Solar Monitoring (PVSM) systems. The simulation for the system is implemented on LabVIEW software and tests are carried out for certain values of input. All the details, expected outcomes, problems, and results are part of this research.

The scope of this research is to obtain the results using real-time simulations performed in LabVIEW. The simulation performed in LabVIEW mimics the implementation of the advanced automation and control system technique Supervisory control and data acquisition (SCADA). The objective of this research work is to perform the essential simulation that is required to investigate current products for PV factors monitoring that influence solar panels efficiency. The goals are: to design and to develop a system for monitoring the PV solar systems using LabVIEW, to simulate the performance of PV solar system using the theoretical methods, to monitor system by means of LabVIEW and to show theoretical effects in the method of the curve of PV performance parameters. Implementing the interfacing technique at home level to monitor the local solar parameters helps in utilizing the solar generated energy in an efficient way. Analysis in LabVIEW helps in studying the parametric condition of the environment where solar is required to be installed.

  • [4]

    Spanias A. S. (2017), Solar energy management as an Internet of Things (IoT) application. In: 8th International Conference on Information, Intelligence, Systems & Applications (IISA), Larnaca, Cyprus, pp. 14.

    • Search Google Scholar
    • Export Citation
  • [5]

    Hollingum J. (2001), Solar energy conversion. Sensor Review, 21 (2).

  • [6]

    Kumar Pathania A. , Goyal B., Raj Saini J. (2017), Diffusion of adoption of solar energy – a structural model analysis. Smart and Sustainable Built Environment, 6 (2), 6683.

    • Search Google Scholar
    • Export Citation
  • [7]

    Ishay J. S. , Rosenzweig E., Litinetsky L., Kirshboim S. (2000), The solar cell in hornet cuticle: nanometer to micrometer scale. Microscopy, 49 (4), 559568.

    • Search Google Scholar
    • Export Citation
  • [8]

    Arefifar S. A. , Ordonez M., Mohamed Y. (2017), Energy management in multi-microgrid systems – development and assessment. In: IEEE Power & Energy Society General Meeting, Chicago, IL, p. 1.

    • Search Google Scholar
    • Export Citation
  • [9]

    (1998), Labview Graphical Programming (2nd edition). Industrial Robot: An International Journal, 25 (3).

  • [10]

    (2002), National Instruments LabVIEW-based distributed I/O system delivers intelligent networked measurement and control. Sensor Review, 22 (1).

    • Search Google Scholar
    • Export Citation
  • [11]

    Haokip S. G. T. , Shah G., Lahiri U. (2017), Psycho-physiological implications of computer based social and non-social interactive tasks for children with autism. In: 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Delhi, pp. 17.

    • Search Google Scholar
    • Export Citation
  • [12]

    Sharma P. , Duttagupta S. P., Agarwal V. (2009), Characterization and modeling of flexible photovoltaic modules for portable power applications. In: International Conference on Sustainable Power Generation and Supply, Nanjing, pp. 17.

    • Search Google Scholar
    • Export Citation
  • [13]

    Farooq A. , Zahid A. (2018), SCADA Based Control of Plant CS40000 Advanced Process Laboratorial Equipment. International Journal of Trend in Research and Development (IJTRD), 5 (2), ISSN: 2394-9333.

    • Search Google Scholar
    • Export Citation
  • [14]

    Farooq A. , Alhalabi W., Alahmadi S. M. (2017), Traffic systems in smart cities using LabVIEW. Journal of Science and Technology Policy Management.

    • Search Google Scholar
    • Export Citation
  • [15]

    Procel P. , Ingenito A., De Rose R., Pierro S., Crupi F., Lanuzza M., Cocorullo G., Isabella O., Zeman M. (2017), Opto-electrical modelling and optimization study of a novel IBC c-Si solar cell. Prog. Photovolt: Res. Appl., 25, 452469.

    • Search Google Scholar
    • Export Citation
  • [16]

    Ammous M. , Fendri D., Chaabene M. (2017), Dynamic modeling and LabVIEW simulation of a photovoltaic thermal collector. In: 8th International Renewable Energy Congress (IREC), Amman, pp. 16.

    • Search Google Scholar
    • Export Citation
  • [17]

    Rafael da Silva M. (2016), Modeling of a fuel cell with PI controller in Simulink – Matlab. In: 3rd International Conference on Systems and Informatics (ICSAI), Shanghai, pp. 160165.

    • Search Google Scholar
    • Export Citation
  • [18]

    Masters G. M. (2005), Photovoltaic Systems. In: Renewable and Efficient Electric Power Systems, Masters G. M. (ed.)

  • [19]

    van der Ham A. J. , Roes M. G. L. (2017), A distributed maximum power point tracking system for solar electric vehicles. In: 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), Warsaw, pp. P.1P.10.

    • Search Google Scholar
    • Export Citation
  • [20]

    Basu T. S. , Maiti S., Chakraborty C. (2016), A hybrid modular multilevel converter for solar power integration. In: IEEE 7th Power India International Conference (PIICON), Bikaner, pp. 16.

    • Search Google Scholar
    • Export Citation
  • [21]

    Singh A. K. , Hussain I., Singh B. (2016), An improved P&O MPPT algorithm for single stage three-phase grid integrated solar PV system. In: IEEE 7th Power India International Conference (PIICON), Bikaner, pp. 16.

    • Search Google Scholar
    • Export Citation
  • [22]

    Yusof M. F. M. , Yusof N. S., Ahmad A. Z. (2017), An analytical strategy for energy storage sizing in isolated microgrid with PV source. In: IEEE Conference on Systems, Process and Control (ICSPC), Malaysia, pp. 122127.

    • Search Google Scholar
    • Export Citation
  • [23]

    Datta S. K. , Bonnet C., Nikaein N. (2014), Personalized power saving profiles generation analyzing smart device usage patterns. In: 7th IFIP Wireless and Mobile Networking Conference (WMNC), Vilamoura, pp. 18.

    • Search Google Scholar
    • Export Citation
  • [24]

    Colak I. , Demirtas M., Kabalci E. (2014), Design, optimisation and application of a resonant DC link inverter for solar energy systems. International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 33 (5), 17611776.

    • Search Google Scholar
    • Export Citation
  • [25]

    Raja Mohamed S. , Jeyanthy P. A., Devaraj D. (2017), Investigation on the impact of high-penetration of PV generation on transient stability. In: IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Srivilliputhur, pp. 16.

    • Search Google Scholar
    • Export Citation
  • [26]

    Alessandro V. , Di Napoli F., Guerriero P., Daliento S. (2014), A novel circuit model of PV cell for electrothermal simulations. In: IET Conference Proceedings, p. 7.3.4.

    • Search Google Scholar
    • Export Citation
  • [27]

    Bhagavathy S. , Pearsall N., Putrus G., Walker S. (2017), Performance assessment of a three-phase distribution network with multiple residential single-phase PV systems. CIRED – Open Access Proceedings Journal, 2017 (1), pp. 24802483.

    • Search Google Scholar
    • Export Citation
  • [28]

    Katiraei F. , Mauch K., Dignard-Bailey L. (2007), Integration of photovoltaic power systems in high-penetration clusters for distribution networks and mini-grids. Int. J. Distrib. Energy Res., 3 (3), 207223.

    • Search Google Scholar
    • Export Citation
  • [29]

    Vasanasong E. , Spooner E. D. (2000), The prediction of net harmonic currents produced by large numbers of residential PV inverters: Sydney Olympic village case study. In: Proceedings of Ninth International Conference on Harmonics and Quality of Power, IEEE, pp. 116121.

    • Search Google Scholar
    • Export Citation
  • [30]

    Luo X. , Wang J., Dooner M., Clarke J. (2015), Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511536.

    • Search Google Scholar
    • Export Citation
  • [31]

    Hashemi Toghroljerdi S. , Ostergaard J., Yang G. (2013), Effect of reactive power management of PV inverters on need for energy storage. In: 39th IEEE Photovoltaic Specialists Conf.

    • Search Google Scholar
    • Export Citation
  • [32]

    Lin J. H. , et al. (2018), A high-efficiency and fast-transient digital-low-dropout regulator with the burst mode corresponding to the power-saving modes of DC-DC switching converters. In: IEEE International Solid – State Circuits Conference – (ISSCC), San Francisco, CA, USA, pp. 314316.

    • Search Google Scholar
    • Export Citation
  • [33]

    Kuitche J. M. , Pan R., Tamizh Mani G., (2012), Statistical analysis of back surface vs. cell temperatures of c-Si modules using measurement error models. In: 38th IEEE Photovoltaic Specialists Conference, Austin, TX, pp. 002953002956.

    • Search Google Scholar
    • Export Citation
  • [34]

    Kuitche J. , Oh J., Brunger A., Inoue T., Muller M., Bauerdick C., Althaus J., Kiehn S., Feng V., Therhaag U., Struwe R. (2011), One year NOCT round-robin testing per IEC 61215 standard. In: 37th IEEE PVSC, Seatle, WA.

    • Search Google Scholar
    • Export Citation
  • [35]

    Hasan M. N. , Habib M. M., Matin M. A., Amin N. (2017), Modeling of high efficient perovskite-Si tandem solar cell. In: 3rd International Conference on Electrical Information and Communication Technology (EICT), Khulna, pp. 15.

    • Search Google Scholar
    • Export Citation
  • [36]

    Cheng Z. , Delahoy A. E., Su Z., Chin K. K. (2014), Steady state minority carrier lifetime and defect level occupation in thin film CdTe solar cells. Thin Solid Films, 558, 391399, ISSN 0040-6090.

    • Search Google Scholar
    • Export Citation
  • [37]

    Lechene B. P. , Clerc R., Arias A. C. (2017), Theoretical analysis and characterization of the energy conversion and storage efficiency of photo-supercapacitors. Solar Energy Materials and Solar Cells, 172, 202212, ISSN 0927-0248.

    • Search Google Scholar
    • Export Citation
  • [38]

    Cui Z. , Tian Z., Zhang Y., Bi Z., Fu S. (2018), Study on real time 3D imaging of streak tube lidar based on LabVIEW. Optik, 157, 768773, ISSN 0030-4026.

    • Search Google Scholar
    • Export Citation
  • [39]

    Tian Z. , Cui Z., Zhang L., Xu T., Zhang Y., Fu S. (2014), Control and image processing for streak tube imaging lidar based on VB and MATLAB. Chin. Opt. Lett. 12, 060015.

    • Search Google Scholar
    • Export Citation
  • [40]

    Inoue Y. , Uchiyama M. (2017), Development of PLC system with large capacity and high reliability. CIRED – Open Access Proceedings Journal, 2017 (1), 10351037.

    • Search Google Scholar
    • Export Citation
  • [41]

    Morris A. S. , Langari R. (2012), Data Acquisition with LabVIEW – Chapter 5. In: Measurement and Instrumentation, Butterworth-Heinemann, Boston, 115133, ISBN 9780123819604.

    • Search Google Scholar
    • Export Citation
  • [42]

    Leaman C. (2015), The benefits of solar energy. Renewable Energy Focus, 16 (56), 113115, ISSN 1755-0084.