View More View Less
  • 1 Bright Trading & Contracting Co., Ltd., Makkah, Kingdom of Saudi Arabia
  • | 2 Federal Urdu University of Arts, Science & Technology, Islamabad, Pakistan
Open access

The world is running out of the oil and natural resources with each passing day. Most of the electricity around the world is generated using natural resources. E-governments are trying to move the electricity production from natural resources to hydro and solar generation. For the places such as in the Middle East and deserted areas in Sindh district of Pakistan, where water resources are low and solar is superlative for generating electrical energy. The objective of this research is to implement, model, design and simulate the Photovoltaic Solar Monitoring (PVSM) systems. The simulation for the system is implemented on LabVIEW software and tests are carried out for certain values of input. All the details, expected outcomes, problems, and results are part of this research.

The scope of this research is to obtain the results using real-time simulations performed in LabVIEW. The simulation performed in LabVIEW mimics the implementation of the advanced automation and control system technique Supervisory control and data acquisition (SCADA). The objective of this research work is to perform the essential simulation that is required to investigate current products for PV factors monitoring that influence solar panels efficiency. The goals are: to design and to develop a system for monitoring the PV solar systems using LabVIEW, to simulate the performance of PV solar system using the theoretical methods, to monitor system by means of LabVIEW and to show theoretical effects in the method of the curve of PV performance parameters. Implementing the interfacing technique at home level to monitor the local solar parameters helps in utilizing the solar generated energy in an efficient way. Analysis in LabVIEW helps in studying the parametric condition of the environment where solar is required to be installed.

  • [4]

    Spanias A. S. (2017), Solar energy management as an Internet of Things (IoT) application. In: 8th International Conference on Information, Intelligence, Systems & Applications (IISA), Larnaca, Cyprus, pp. 14.

    • Search Google Scholar
    • Export Citation
  • [5]

    Hollingum J. (2001), Solar energy conversion. Sensor Review, 21 (2).

  • [6]

    Kumar Pathania A. , Goyal B., Raj Saini J. (2017), Diffusion of adoption of solar energy – a structural model analysis. Smart and Sustainable Built Environment, 6 (2), 6683.

    • Search Google Scholar
    • Export Citation
  • [7]

    Ishay J. S. , Rosenzweig E., Litinetsky L., Kirshboim S. (2000), The solar cell in hornet cuticle: nanometer to micrometer scale. Microscopy, 49 (4), 559568.

    • Search Google Scholar
    • Export Citation
  • [8]

    Arefifar S. A. , Ordonez M., Mohamed Y. (2017), Energy management in multi-microgrid systems – development and assessment. In: IEEE Power & Energy Society General Meeting, Chicago, IL, p. 1.

    • Search Google Scholar
    • Export Citation
  • [9]

    (1998), Labview Graphical Programming (2nd edition). Industrial Robot: An International Journal, 25 (3).

  • [10]

    (2002), National Instruments LabVIEW-based distributed I/O system delivers intelligent networked measurement and control. Sensor Review, 22 (1).

    • Search Google Scholar
    • Export Citation
  • [11]

    Haokip S. G. T. , Shah G., Lahiri U. (2017), Psycho-physiological implications of computer based social and non-social interactive tasks for children with autism. In: 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Delhi, pp. 17.

    • Search Google Scholar
    • Export Citation
  • [12]

    Sharma P. , Duttagupta S. P., Agarwal V. (2009), Characterization and modeling of flexible photovoltaic modules for portable power applications. In: International Conference on Sustainable Power Generation and Supply, Nanjing, pp. 17.

    • Search Google Scholar
    • Export Citation
  • [13]

    Farooq A. , Zahid A. (2018), SCADA Based Control of Plant CS40000 Advanced Process Laboratorial Equipment. International Journal of Trend in Research and Development (IJTRD), 5 (2), ISSN: 2394-9333.

    • Search Google Scholar
    • Export Citation
  • [14]

    Farooq A. , Alhalabi W., Alahmadi S. M. (2017), Traffic systems in smart cities using LabVIEW. Journal of Science and Technology Policy Management.

    • Search Google Scholar
    • Export Citation
  • [15]

    Procel P. , Ingenito A., De Rose R., Pierro S., Crupi F., Lanuzza M., Cocorullo G., Isabella O., Zeman M. (2017), Opto-electrical modelling and optimization study of a novel IBC c-Si solar cell. Prog. Photovolt: Res. Appl., 25, 452469.

    • Search Google Scholar
    • Export Citation
  • [16]

    Ammous M. , Fendri D., Chaabene M. (2017), Dynamic modeling and LabVIEW simulation of a photovoltaic thermal collector. In: 8th International Renewable Energy Congress (IREC), Amman, pp. 16.

    • Search Google Scholar
    • Export Citation
  • [17]

    Rafael da Silva M. (2016), Modeling of a fuel cell with PI controller in Simulink – Matlab. In: 3rd International Conference on Systems and Informatics (ICSAI), Shanghai, pp. 160165.

    • Search Google Scholar
    • Export Citation
  • [18]

    Masters G. M. (2005), Photovoltaic Systems. In: Renewable and Efficient Electric Power Systems, Masters G. M. (ed.)

  • [19]

    van der Ham A. J. , Roes M. G. L. (2017), A distributed maximum power point tracking system for solar electric vehicles. In: 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), Warsaw, pp. P.1P.10.

    • Search Google Scholar
    • Export Citation
  • [20]

    Basu T. S. , Maiti S., Chakraborty C. (2016), A hybrid modular multilevel converter for solar power integration. In: IEEE 7th Power India International Conference (PIICON), Bikaner, pp. 16.

    • Search Google Scholar
    • Export Citation
  • [21]

    Singh A. K. , Hussain I., Singh B. (2016), An improved P&O MPPT algorithm for single stage three-phase grid integrated solar PV system. In: IEEE 7th Power India International Conference (PIICON), Bikaner, pp. 16.

    • Search Google Scholar
    • Export Citation
  • [22]

    Yusof M. F. M. , Yusof N. S., Ahmad A. Z. (2017), An analytical strategy for energy storage sizing in isolated microgrid with PV source. In: IEEE Conference on Systems, Process and Control (ICSPC), Malaysia, pp. 122127.

    • Search Google Scholar
    • Export Citation
  • [23]

    Datta S. K. , Bonnet C., Nikaein N. (2014), Personalized power saving profiles generation analyzing smart device usage patterns. In: 7th IFIP Wireless and Mobile Networking Conference (WMNC), Vilamoura, pp. 18.

    • Search Google Scholar
    • Export Citation
  • [24]

    Colak I. , Demirtas M., Kabalci E. (2014), Design, optimisation and application of a resonant DC link inverter for solar energy systems. International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 33 (5), 17611776.

    • Search Google Scholar
    • Export Citation
  • [25]

    Raja Mohamed S. , Jeyanthy P. A., Devaraj D. (2017), Investigation on the impact of high-penetration of PV generation on transient stability. In: IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Srivilliputhur, pp. 16.

    • Search Google Scholar
    • Export Citation
  • [26]

    Alessandro V. , Di Napoli F., Guerriero P., Daliento S. (2014), A novel circuit model of PV cell for electrothermal simulations. In: IET Conference Proceedings, p. 7.3.4.

    • Search Google Scholar
    • Export Citation
  • [27]

    Bhagavathy S. , Pearsall N., Putrus G., Walker S. (2017), Performance assessment of a three-phase distribution network with multiple residential single-phase PV systems. CIRED – Open Access Proceedings Journal, 2017 (1), pp. 24802483.

    • Search Google Scholar
    • Export Citation
  • [28]

    Katiraei F. , Mauch K., Dignard-Bailey L. (2007), Integration of photovoltaic power systems in high-penetration clusters for distribution networks and mini-grids. Int. J. Distrib. Energy Res., 3 (3), 207223.

    • Search Google Scholar
    • Export Citation
  • [29]

    Vasanasong E. , Spooner E. D. (2000), The prediction of net harmonic currents produced by large numbers of residential PV inverters: Sydney Olympic village case study. In: Proceedings of Ninth International Conference on Harmonics and Quality of Power, IEEE, pp. 116121.

    • Search Google Scholar
    • Export Citation
  • [30]

    Luo X. , Wang J., Dooner M., Clarke J. (2015), Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511536.

    • Search Google Scholar
    • Export Citation
  • [31]

    Hashemi Toghroljerdi S. , Ostergaard J., Yang G. (2013), Effect of reactive power management of PV inverters on need for energy storage. In: 39th IEEE Photovoltaic Specialists Conf.

    • Search Google Scholar
    • Export Citation
  • [32]

    Lin J. H. , et al. (2018), A high-efficiency and fast-transient digital-low-dropout regulator with the burst mode corresponding to the power-saving modes of DC-DC switching converters. In: IEEE International Solid – State Circuits Conference – (ISSCC), San Francisco, CA, USA, pp. 314316.

    • Search Google Scholar
    • Export Citation
  • [33]

    Kuitche J. M. , Pan R., Tamizh Mani G., (2012), Statistical analysis of back surface vs. cell temperatures of c-Si modules using measurement error models. In: 38th IEEE Photovoltaic Specialists Conference, Austin, TX, pp. 002953002956.

    • Search Google Scholar
    • Export Citation
  • [34]

    Kuitche J. , Oh J., Brunger A., Inoue T., Muller M., Bauerdick C., Althaus J., Kiehn S., Feng V., Therhaag U., Struwe R. (2011), One year NOCT round-robin testing per IEC 61215 standard. In: 37th IEEE PVSC, Seatle, WA.

    • Search Google Scholar
    • Export Citation
  • [35]

    Hasan M. N. , Habib M. M., Matin M. A., Amin N. (2017), Modeling of high efficient perovskite-Si tandem solar cell. In: 3rd International Conference on Electrical Information and Communication Technology (EICT), Khulna, pp. 15.

    • Search Google Scholar
    • Export Citation
  • [36]

    Cheng Z. , Delahoy A. E., Su Z., Chin K. K. (2014), Steady state minority carrier lifetime and defect level occupation in thin film CdTe solar cells. Thin Solid Films, 558, 391399, ISSN 0040-6090.

    • Search Google Scholar
    • Export Citation
  • [37]

    Lechene B. P. , Clerc R., Arias A. C. (2017), Theoretical analysis and characterization of the energy conversion and storage efficiency of photo-supercapacitors. Solar Energy Materials and Solar Cells, 172, 202212, ISSN 0927-0248.

    • Search Google Scholar
    • Export Citation
  • [38]

    Cui Z. , Tian Z., Zhang Y., Bi Z., Fu S. (2018), Study on real time 3D imaging of streak tube lidar based on LabVIEW. Optik, 157, 768773, ISSN 0030-4026.

    • Search Google Scholar
    • Export Citation
  • [39]

    Tian Z. , Cui Z., Zhang L., Xu T., Zhang Y., Fu S. (2014), Control and image processing for streak tube imaging lidar based on VB and MATLAB. Chin. Opt. Lett. 12, 060015.

    • Search Google Scholar
    • Export Citation
  • [40]

    Inoue Y. , Uchiyama M. (2017), Development of PLC system with large capacity and high reliability. CIRED – Open Access Proceedings Journal, 2017 (1), 10351037.

    • Search Google Scholar
    • Export Citation
  • [41]

    Morris A. S. , Langari R. (2012), Data Acquisition with LabVIEW – Chapter 5. In: Measurement and Instrumentation, Butterworth-Heinemann, Boston, 115133, ISBN 9780123819604.

    • Search Google Scholar
    • Export Citation
  • [42]

    Leaman C. (2015), The benefits of solar energy. Renewable Energy Focus, 16 (56), 113115, ISSN 1755-0084.

The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • B. Nagy, Budapest University of Technology and Economics, Budapest, Hungary
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 4 12
Jul 2021 0 11 40
Aug 2021 0 9 35
Sep 2021 0 10 12
Oct 2021 0 6 27
Nov 2021 0 11 20
Dec 2021 0 0 0