Constant stream of data has been generated and stored as more devices are being connected to the internet and supported with cloud technologies. The price drop of such applications along with industry 4.0 trending, triggered an explosive growth and demand for many IT modern solutions. From an industrial point of view, sensorization practices are spreading through factories and warehouses where software is constantly adapting to provide actionable insights in a data-driven configuration. The fourth industrial revolution is empowering the manufacturers with solutions for cost reduction, which translates in competitive advantage. The sector of maintenance operations is leading in engineering innovation, from reactive to planned preventive techniques the next step in history of proactive approaches is Predictive Analytics Maintenance.
Dabbs T. (2014), The True Cost of Maintenance. Pump & Systems
Stevenson W. J. (2015), Operations Management. McGraw-Hill, Twelfth Edition
Nowlan F. S. , Heap H. F. (1978), Reliability-Centered Maintenance. United Airlines, for Office of Assistant Secretary of Defense, Washington, D.C.
Dunn S. (2016), Big Data, Predictive Analytics and Maintenance. Retrieved from: https://www.assetivity.com.au/article/
Lee J. , Kao H., Yang, S. (2014), Service innovation and smart analytics for Industry 4.0 and big data environment. Product Services Systems and Value Creation. Proceedings of the 6th CIRP Conference on Industrial Product-Service Systems
Larose D. T. , Larose C. D. (2015), Data mining and predictive analytics. John Wiley & Sons
Blackburn R. , et al. (2015), A predictive analytics approach for demand forecasting in the process industry. International Transactions in Operational Research, 22(3), 407–428.
Kocsis I. , Mankovits T., Vámosi A., Deák K. (2014), SVM variants used in the investigation of some engineering optimization problems. In: Rodrigues H. C., Herskovits J., Mota Soares C. M., Guedes J. M., Araújo A. L., Folgado J. O., Moleiro F., Madeira J. F. A. (szerk.) Book of Abstracts of the 4th International Conference on Engineering Optimization. Lisboa, Portugália, 2014.09.08-2014.09.11. Lisboa: IST Press, pp. 213–214. (ISBN: 978-989-96276-6-6)
Borsavölgyi T. , Mankovits T., Kocsis I. (2011), SVM alkalmazása műszaki feladatok optimalizálására [Usage of SVM for optimization in technical problems]. In: Pokorádi L. (szerk.), Műszaki Tudomány az Észak-kelet Magyarországi régióban 2011. Miskolc, Magyarország, 2011.05.18. Debrecen: Debreceni Akadémiai Bizottság (DAB), pp. 499–507. (Elektronikus Műszaki Füzetek; 9.) (ISBN: 978-963-7064-25-8)
Mankovits T. , Vámosi A., Kocsis I., Huri D., Kállai I., Szabó T. (2015), Shape design of axially symmetric rubber part using finite element method and support vector machines. In: Bodzás S., Mankovits T. (szerk.) Proceedings of the 3rd International Scientific Conference on Advances in Mechanical Engineering (ISCAME 2015). Debrecen, Magyarország, 2015.11.19. Debrecen: University of Debrecen Faculty of Engineering, 2015. pp. 114–119. (ISBN: 978-963-473-917-3)
Mankovits T. , Szabó T., Kocsis I., Páczelt I. (2014), Optimization of the shape of axi-symmetric rubber bumpers, Strojniski Vestnik. Journal of Mechanical Engineering, 60(1), 61–71.
Kocsis I. , Mankovits T. (2013), Application of non-parametric regression in engineering optimization. Analele Universitatii din Oradea Fasciola Management si Inginerie Tehnologica / Annals of the University of Oradea Fascicle of Management and Technological Engineering, 12(22), 159–162.
Mankovits T. , Kocsis I., Portik T., Szabó T., Páczelt I. (2013), Shape design of rubber part using FEM. International Review of Applied Sciences and Engineering, 4(2), 85–94.
Mankovits T. , Vámosi A., Kocsis I., Huri D., Kállai I., Szabó T. (2015), Shape design of axially symmetric rubber part using finite element method and support vector machines. In: Bodzás S., Mankovits T. (szerk.) Proceedings of the 3rd International Scientific Conference on Advances in Mechanical Engineering (ISCAME 2015). Debrecen, Magyarország, 2015.11.19. Debrecen: University of Debrecen Faculty of Engineering, pp. 114–119. (ISBN: 978-963-473-917-3)