View More View Less
  • 1 Northwest University, Xi’an 710069, China
Open access

In the present paper, various formulae for evaluating critical buckling strain of bending pipeline are analyzed on basis of its actual nature, available test data or finite element calculation results. The available test data is from different resources, it provides a more objective comparison; Especially, the experimental bending buckling data of Corona et al. and Kyriakides et al. for Al-6061-T6 aluminum pipes with various D/t value, as well as the prediction of Minnaar’s FEM regressive formula for high grade steel pipe are reanalyzed to check the reasonability of the plastically elliptical cross-section model. It shows that the consequence of the plastically elliptical cross-section model is more reasonable than others for the critical buckling strain prediction of a pipe bending in most cases.

  • [1]

    Ji L. K. , Zheng M., et al. (2015), Apparent strain of a pipe at plastic bending buckling state. J. of the Brazilian Soc. of Mech. Sci. & Eng., 37, 18111818.

    • Search Google Scholar
    • Export Citation
  • [2]

    Robertson A. , Li H., Mackenzie D. (2005), Plastic collapse of pipe bends under combined internal pressure and in-plane bending. International Journal of Pressure Vessels and Piping, 82, 407416.

    • Search Google Scholar
    • Export Citation
  • [3]

    Brazier L. G. (1927), On the flexure of thin cylindrical shells and other thin sections. Proc. Roy. Sot. Series A, 116, 104114.

  • [4]

    Seide P. , Weingarten V. I. (1961), On the buckling of circular cylindrical shells under pure bending. J. Appl. Mech., ASME, 28, 112116.

    • Search Google Scholar
    • Export Citation
  • [5]

    Fabian O. (1977), Collapse of cylindrical elastic tubes under combined bending, pressure and axial loads, ht. J. Solids Structures, 13, 12571270.

    • Search Google Scholar
    • Export Citation
  • [6]

    Li L.Y. (1996), Approximate estimates of dynamic instability of long circular cylindrical shells under pure bending. Int. J. Pres. Ves. & Piping, 61, 3740.

    • Search Google Scholar
    • Export Citation
  • [7]

    Jirsa J. O. , Lee F. K., Wilhoit J. C., Merwin J. E. (1970), Ovaling of pipeline under pure bending. Proc. Offshore Tech. Conf., OTC 1569, I, 573582.

    • Search Google Scholar
    • Export Citation
  • [8]

    Sherman D. R. (1976), Tests of circular steel tubes in bending. J. Struct. Div. ASCE, 102, 21812195.

  • [9]

    Reddy B. D. (1979), An experimental study of the plastic buckling of circular cylinders in pure bending. Int. J. Solids Structures, 15, 669683.

    • Search Google Scholar
    • Export Citation
  • [10]

    Gellin S. (1980), The plastic buckling of long cylindrical shells under pure bending. Int. J. Solids Structures, 16, 397407.

  • [11]

    Bushnell D. (1981), Elastic-plastic bending and buckling of pipes and elbows. Comp. Struct., 13, 241254.

  • [12]

    Calladine C. R. (1983), Plastic buckling of tubes in pure bending. In: Collapse, the Buckling of Structures in Theory and Practice (ed. J. M. T. Thompson and G. W. Hunt), Cambridge University Press, Cambridge, pp. 111124.

    • Search Google Scholar
    • Export Citation
  • [13]

    Kyriakides S. , Shaw P. K. (1987), Inelastic bending of tubes under cyclic loading. J. Pressure Vessel Tech., ASME, 109, 169178.

  • [14]

    Wadee M. Khurram , Wadee M. Ahmer, Bassom Andrew P., Aigner Andreas A. (2006), Longitudinally inhomogeneous deformation patterns in isotropic tubes under pure bending. Proc. R. Soc. A, 462, 817838.

    • Search Google Scholar
    • Export Citation
  • [15]

    Grognec Philippe Le , van Anh Le (2009), Some new analytical results for plastic buckling and initial post-buckling of plates and cylinders under uniform compression. Thin-Walled Structures, 47, 879889.

    • Search Google Scholar
    • Export Citation
  • [16]

    Poonaya S. , Teeboonma U., Thinvongpituk C. (2009), Plastic collapse analysis of thin-walled circular tubes subjected to bending. Thin-Walled Structures, 47, 637645.

    • Search Google Scholar
    • Export Citation
  • [17]

    Ranzi G. , Luongo A. (2011), A new approach for thinwalled member analysis in the frame work of GBT. Thin-Walled Structures, 49, 14041414.

    • Search Google Scholar
    • Export Citation
  • [18]

    Christo M. T. , Veerappan A. R., Shanmugam S. (2012), Effect of ovality and variable wall thickness on collapse loads in pipe bends subjected to in-plane bending closing moment. Engineering Fracture Mechanics, 79, 138148.

    • Search Google Scholar
    • Export Citation
  • [19]

    Gayan R. , Ruan D, Hajj M., Durandet Y. (2014), Performance of aluminium / Terocore hybrid structures in quasi-static three-point bending: Experimental and finite element analysis study. Materials and Design, 54, 880892.

    • Search Google Scholar
    • Export Citation
  • [20]

    Li H. L. (2008), Development and application of strain based design and anti-large-strain pipeline steel. Petroleum Sci. & Tech. Forum (in Chinese), 27(2), 1925.

    • Search Google Scholar
    • Export Citation
  • [21]

    Dorey A. B. , Murray D. W., Cheng J. J. R. (2000), An experimental evaluation of critical buckling strain criteria. 2000 International Pipeline Conference, Vol. 1, Calgary, Alberta, Canada, October 1–5, pp. 7180.

    • Search Google Scholar
    • Export Citation
  • [22]

    Dorey A. B. , Murray D. W., Cheng J. J. (2006), Critical buckling strain equations for energy pipelines–A parametric study. Transaction of the ASME, 128, 248255.

    • Search Google Scholar
    • Export Citation
  • [23]

    Vitali L. , Bruschi R., Mork K. J. et al. (1999), Hotpipe project-capacity of pipes subjected to internal pressure, axial force and bending moment [C]. In: Proceedings of the 9th International Offshore and Polar Engineering Conference. Brest: The international Society off Offshore and Polar Engineering, pp. 2233.

    • Search Google Scholar
    • Export Citation
  • [24]

    Sherman D. (1976), Tests of circular steel tubes in bending [J]. ASCE Journal of Structural Division, 102, 21812195.

  • [25]

    Stephens D. R. , Olson R. J., Rosenfeld M. J. (1991), Topical Report on Pipeline Monitoring-limit State Criteria [R]. Columbus: Battelle, NG-18 Report No. 188.

    • Search Google Scholar
    • Export Citation
  • [26]

    Canadian Standards Association (2007), Z662-07 Oil and gas pipeline systems and Special Publication, Z662.1-07. Commentary on CSA Z662-07, Oil and gas pipeline systems.

    • Search Google Scholar
    • Export Citation
  • [27]

    DNV, Offshore Standard (2000), DNV-OS-F101, Submarine Pipeline Systems, Det Norske Veritas, J.

  • [28]

    Wierzbicki T. , Sinmao Monique V. (1997), A simplified model of Brazier effect in plastic bending of cylindrical tubes. Int. J. Pres. Ves. & Piping, 71, 1928.

    • Search Google Scholar
    • Export Citation
  • [29]

    Corona E. , Lee L.-H., Kyriakides S. (2006), Yield anisotropy effects on buckling of circular tubes under bending. Int. J. of Solids Structures, 43, 70997118.

    • Search Google Scholar
    • Export Citation
  • [30]

    Kyriakides S. , Ju G. T. (1992), Bifurcation and location instability in cylindrical shells under bending–I experiments. Int. J. of Solids Structures, 29(9), 11171142.

    • Search Google Scholar
    • Export Citation
  • [31]

    Minnaar K. , Duffy B. W., Olso E. et al. (2004), Structural design capacity of X120 linpipe[C]. In: Proceedings of International Pipeline Conference. Calgary, Canada, pp. 17511760.

    • Search Google Scholar
    • Export Citation
  • [32]

    Zhang X. , Feng Y., Zhao W. et al. (2006), Microstructure and mechanical properties of X80 pipeline steel. Special Steel., 27(3), 1117.

    • Search Google Scholar
    • Export Citation
  • [33]

    Wang Y. , Zhao Z., Zhu T. (2012), Microstructure and mechanical properties of high strength steels. Materials and Heat Treatment, 33(11), 117121.

    • Search Google Scholar
    • Export Citation
  • [34]

    Guarracino F. , Fraldi M., Giordano A. (2008), Analysis of testing methods of pipelines for limit state design. Applied Ocean Research, 30, 297304.

    • Search Google Scholar
    • Export Citation
  • [35]

    Gresnigt A. M. , van Foeken R. J. (2001), Local buckling of UOE and seamless steel pipes. Paper No. AMG-2001-04. In: ISOPE conference, pp. 131142.

    • Search Google Scholar
    • Export Citation
The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • B. Nagy, Budapest University of Technology and Economics, Budapest, Hungary
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 1 1
Jul 2021 0 2 22
Aug 2021 0 9 10
Sep 2021 0 3 10
Oct 2021 0 6 13
Nov 2021 0 1 21
Dec 2021 0 0 0