View More View Less
  • 1 Budapest University of Technology and Economics, H-1111 Budapest, Műegyetem rakpart 3–9, Hungary
Open access

Fluidized bed dryers are widely used in several fields of industry. Sufficiently accurate thermal models provide an opportunity to increase the effectiveness of dryers. The required size of a fluidized bed dryer can be defined with the application of mathematical model. This work is aimed at developing mathematical model to investigate the influence of operating parameters in a fluidized bed dryer using volumetric heat transfer coefficient. After the defining the input parameters of the differential equations, the required entry length of the dryer which effective heat and mass transfer between gas and particles takes place can be estimated. The correct estimation of the entry length is useful in optimal design of a fluidized bed dryer. Using the model the impact of the drying parameters can be determined to the required length.

  • [1]

    Syahrul S. , Hamdullahpur F. et al. (2002), Exergy analysis of fluidized bed drying of moist particles. Exergy, an International Journal, 2, 8798.

    • Search Google Scholar
    • Export Citation
  • [2]

    Kunii D. , Levenspiel O. (1991), Fluidization Engineering. 2nd ed., New York: Butterworth-Heinemann.

  • [3]

    Srinivasakannan C. , Shoibi A. A. et al. (2012), Combined resistance bubbling bed model for drying of solids in fluidized beds. Heat and Mass Transfer, 48(4), 621625.

    • Search Google Scholar
    • Export Citation
  • [4]

    Davidson J. F. , Harrison D. (1963), Fluidized Particles. New York: Cambridge University Press.

  • [5]

    Wang, H. G., Dyakowski T., et al. (2007), Modelling of batch fluidised bed drying of pharmaceutical granules. Chemical Engineering Science, 62, 15241535.

    • Search Google Scholar
    • Export Citation
  • [6]

    Khorshidi J. , Davari H., et al. (2011), Model making for heat transfer in a fluidized bed dryer. Journal of Basic and Applied Scientific Research, 1, 17321738.

    • Search Google Scholar
    • Export Citation
  • [7]

    Rizzi Jr. A. C. , Passos M. L., et al. (2009), Modeling and simulating the drying of grass seeds (Brachiariabrizantha) in fluidized beds: evaluation of heat transfer coefficients. Brazilian Journal of Chemical Engineering, 26(3), 545554.

    • Search Google Scholar
    • Export Citation
  • [8]

    Zahed A. H. , Zhu J.-X., et al. (2007), Modelling and simulation of batch and continuous fluidized bed dryers. Drying Technology, 13, 128.

    • Search Google Scholar
    • Export Citation
  • [9]

    Burgschweiger J. , Tsotsas E. (2002), Experimental investigation and modelling of continuous fluidized bed drying under steady-state and dynamic conditions. Chemical Engineering Science, 57, 50215038.

    • Search Google Scholar
    • Export Citation
  • [10]

    Roy P. , Vashishtha M., et al. (2009), Heat and mass transfer study in fluidized bed granulation –Prediction of entry length. Particuology, 7, 215219.

    • Search Google Scholar
    • Export Citation
  • [11]

    Walton J. S. , Olson R. L., et al. (1952), The partial coefficient of heat transfer in a drying fluidized bed. Chem. Eng. Sci., 44, 14741480.

    • Search Google Scholar
    • Export Citation
  • [12]

    Ng W. K. , Tan R. B. H. (2008), Case study: Optimization of an industrial fluidized bed drying process for large Geldart-type D nylon particles. Powder Technology, 180, 289295.

    • Search Google Scholar
    • Export Citation
  • [13]

    Kumaresan R. , Viruthagiri T. (2006), Simultaneous heat and mass transfer studies in drying ammonium chloride in a batch-fluidized bed dryer. Indian Journal of Chemical Technology, 13, 440447.

    • Search Google Scholar
    • Export Citation
  • [14]

    Ciesielczyk W. (1996), Analogy of heat and mass transfer during constant rate period in fluidized bed drying. Drying Technology, 14, 217230.

    • Search Google Scholar
    • Export Citation
  • [15]

    Alvarez P. I. , Shene C. (1992), Experimental determination of volumetric heat transfer coefficient in a rotary dryer. Drying Technology, 12, 16051627.

    • Search Google Scholar
    • Export Citation
  • [16]

    Poós T. , Szabó V. (2016), Application of volumetric heat transfer coefficient on fluidized bed dryers. 8th International Symposium on Exploitation of Renewable Energy Sources, pp. 7275.

    • Search Google Scholar
    • Export Citation
  • [17]

    Treybal R. E. (1981), Mass-transfer operations. 3rd ed. New York: McGraw-Hill Company.

  • [18]

    Szentgyörgyi S. , Molnár K., Parti M. (1986), Transzportfolyamatok. Tankönyvkiadó, Budapest.

  • [19]

    Környey T. (2005), Termodinamika. Muegyetemi Kiadó.

  • [20]

    Poós T. , Örvös M. (2012), Heat- and mass transfer in agitated co- or countercurrent, conductive–convective heated drum dryer. Drying Technology 30, 14571468.

    • Search Google Scholar
    • Export Citation
  • [21]

    Aviara N. A. , Ajibola O. O., et al. (2006), Moisture sorption isotherms of sorghum malt at 40 and 50 °C. Journal of Stored Product Research, 42, 290301.

    • Search Google Scholar
    • Export Citation
  • [22]

    Nyers J. , Nyers A. (2016), Hydraulic analysis of heat pump’s heating circuit using mathematical model. 9th ICCC International Conference, Proceedings-USB, Tihany, Hungary. 04-08.07. ISBN 978-1-4799-0061-9, pp. 349353.

    • Search Google Scholar
    • Export Citation
The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • B. Nagy, Budapest University of Technology and Economics, Budapest, Hungary
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 2 3
May 2021 0 3 11
Jun 2021 0 5 19
Jul 2021 0 6 8
Aug 2021 0 12 8
Sep 2021 0 4 1
Oct 2021 0 0 0