View More View Less
  • 1 University of Debrecen, H-4028 Debrecen, Ótemető u. 2–4, Hungary
Open access

The laboratory investigations of the heat transfer properties of wall structures are very significant from the point of view of designing the buildings. In this article measurements and calculations will be presented in order to manifest the effect of the forced and un-forced convection of air at the cold surface of the wall. A steady-state method for measuring the thermal resistance of wall structures with Hukseflux apparatus is presented in this article. The measurements were accomplished through, firstly on an un-insulated inbuilt plaster/brick/plaster wall construction and later it was covered with a 0.013 m thick aerogel layer blanket. Aerogels are nanoporous lightweight materials, were discovered more than 70 years ago. In these years their applications are truly spread over. During the investigations the wall structures were tested without forcing the air to motion, and then measurements were carried both on the insulated and un-insulated wall structures, where the movement of the air was forced by a ventilator from three different directions with the same 1 m/s velocity near the wall.

  • [1]

    Kalmár F. , Kalmár T. (2012), Interrelation between mean radiant temperature and room geometry. Energy and Buildings, 55, 414421.

  • [2]

    Kalmár F. , Kalmár T. (2007), Energy class. building structure and solar gains. Journal of Harbin Institute of Technology (New Series), 14, 8184.

    • Search Google Scholar
    • Export Citation
  • [3]

    Borodinecs A. , Kreslins A. (2008), Reduction of cooling and heating loads using building envelopes with controlled thermal resistance. In: Proceedings of Conference: Air Conditioning and the Low Carbon Cooling Challenge–Windsor, 2008, Conference Code 89553

    • Search Google Scholar
    • Export Citation
  • [4]

    Galliano R. , Ghazi Wakili K., Stahl Th., Binder B., Daniotti B. (2016), Performance evaluation of aerogel-based and perlite-based prototyped insulations for internal thermal retrofitting: HMT model validation by monitoring at demo scale. Energy and Buildings, 126, 275286.

    • Search Google Scholar
    • Export Citation
  • [5]

    Ghazi Wakili K., Stahl Th., Heiduk E., Schuss M., Vonbank R., Pont U., Sustr C., Wolosiuk D., Mahdavi A. (2015), High performance aerogel containing plaster for historic buildings with structured façades. Energy Procedia, 78, 949954. doi: 10.1016/j.egypro.2015.11.027

    • Search Google Scholar
    • Export Citation
  • [6]

    Jelle B. P. (2011), Traditional. state-of-the-art and future thermal building insulation materials and solutions–Properties, requirements and possibilities. Energy and Buildings, 43, 25492563.

    • Search Google Scholar
    • Export Citation
  • [7]

    Stahl Th., Brunner S., Zimmermann M., Ghazi Wakili K. (2012), Thermo-hygric properties of a newly developed aerogel based insulation rendering for both exterior and interior applications. Energy and Buildings, 44, 114117.

    • Search Google Scholar
    • Export Citation
  • [8]

    Lakatos. A. (2017), Comprehensive thermal transmittance investigations carried out on opaque aerogel insulation blanket. Materials and Structures, 501; 2. DOI: 10.1617/s11527-016-0876-7

    • Search Google Scholar
    • Export Citation
  • [9]

    Chávez-Galán J. , Almanza R., Rodríguez Cuevas N. (2014), Convective heat transfer coefficients: experimental estimation and its impact on thermal building design for walls made of different Mexican building materials. Concreto y Cemento, Investigación y Desarrollo, 5(2), 2638.

    • Search Google Scholar
    • Export Citation
  • [10]

    Dodog Z. , Halász Gy. (2016), Az épülethatároló szerkeze tek hoátadási tényezoinek elemzése. Magyar Épületgépészet, 10.

  • [11]

    Davies M. , Martin C., Watson M., Ni Riain C. (2005), The development of an accurate tool to determine convective heat transfer coefficients in real buildings. Energy and Buildings, 37, 141145.

    • Search Google Scholar
    • Export Citation
  • [12]

    Martynenko O. , Khramtso P. (2005), Free-Convective Heat Transfer. Springer. The Netherlands.

  • [13]

    Khalifa A. J. N. (2001), Natural convective heat transfer coefficient: a review I. Isolated vertical and horizontal surfaces. Energy Conversion and Management. 42, 491504.

    • Search Google Scholar
    • Export Citation
  • [14]

    Obyn S. , Moeseke G. (2015), Variability and impact of internal surfaces convective heat transfer coefficients in the thermal evaluation of office buildings. Applied Thermal Engineering, 87, 258272.

    • Search Google Scholar
    • Export Citation
  • [15]

    Anders Ohlsson K. E. , Östin R., Grundberg S., Olofsson T. (2016), Dynamic model for measurement of convective heat transfer coefficient at external building surfaces. Journal of Building Engineering, 239245.

    • Search Google Scholar
    • Export Citation
  • [16]

    Lakatos A. (2014), Measurements of thermal properties of different building materials. Advanced Materials Research, 1016, 733737.

  • [17]

    Lakatos A. , Csáky I., Kalmár F. (2015), Thermal conductivity measurements with different methods: A procedure for the estimation of the retardation time. Materials and Structures, 48, 5, 13431353.

    • Search Google Scholar
    • Export Citation
  • [18]

    Lakatos A. (2016), Measurement of the decrement factor of different wall structures. WSEAS Transactions on Heat and Mass Transfer, 11, 1, 5.

    • Search Google Scholar
    • Export Citation
The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • B. Nagy, Budapest University of Technology and Economics, Budapest, Hungary
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 1
May 2021 0 4 1
Jun 2021 0 4 1
Jul 2021 0 0 0
Aug 2021 0 5 3
Sep 2021 0 3 1
Oct 2021 0 0 0