View More View Less
  • 1 Institute for Mechanical Engineering Technology, PhD School of Mechanical Engineering, Szent István University, H-2100 Gödöllő, Páter Károly utca 1, Hungary
  • | 2 Research Centre for Natural Sciences, HAS, Magyar tudósok krt. 2, Budapest, Hungary
Open access

Polytetrafluoroethylene surface was treated by atmospheric DBD plasma for 1 min in ambient conditions. The effect of DBD plasma introduces signifi cant increasing of the surface energy (wettability) within 24 hours after treatment. However, the surface starts recovering to the original state with ageing. The surface elemental composition shows enhancing in oxygen content which suggests presenting the polar functional groups. The surface roughness exhibits a mild reduction within 24 hours after treatment. Whereas, the roughness values start to increase with the function of time.

  • [1]

    McKeen L. W. (2015), Fluorinated coatings and finishes handbook: The definitive user’s guide. 2nd edition, Oxford: William Andrew. ISBN: 978-0-8155-1522-7

    • Search Google Scholar
    • Export Citation
  • [2]

    Mona M. , Occhiello E., Garbassi F. (1990), Surface characterization of plasma-treated PTFE. Surface and Interface Analysis, 16, 412417. DOI: 10.1002/sia.740160186.

    • Search Google Scholar
    • Export Citation
  • [3]

    Tan K. L. , Woon L. L., Wong H. K., Kang E. T., Neoh K. G. (1993), Surface modification of plasma- pretreated poly(tetrafluoroethylene) films by graft copolymerization. Macromolecules, 26, 28322836. DOI: 10.1021/ma00063 a030

    • Search Google Scholar
    • Export Citation
  • [4]

    Wilson D. J. , Williams R. L., Pond R. C. (2001), Plasma modification of PTFE surfaces. Part I: Surfaces immediately following plasma treatment. Surface and Interface Analysis, 31, 385396. DOI: 10.1002/sia.1065.

    • Search Google Scholar
    • Export Citation
  • [5]

    Liu C. Z. , Wu J. Q., Ren L. Q., Tong J., Li J. Q., Cui N., Brown N. M. D., Meenan B. J. (2004), Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification. Materials Chemistry and Physics, 85, 340346. DOI: 10.1016/j.matchemphys.2004.01.026.

    • Search Google Scholar
    • Export Citation
  • [6]

    Chena W. , Jie-ronga C., Ru L. (2008), Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma. Applied Surface Science, 254, 28822888. DOI: 10.1016/j.apsusc.2007.10.029

    • Search Google Scholar
    • Export Citation
  • [7]

    Kereszturi K. , Tóth A., Mohai M., Bertóti I., Szépvölgyi J. (2010), Nitrogen plasma-based ion implantation of poly(tetrafluoroethylene). Applied Surface Science, 256, 63856389. DOI: 10.1016/j.apsusc.2010.04.021

    • Search Google Scholar
    • Export Citation
  • [8]

    Hunke H. , Soin N., Shah T., Kramer E., Witan K., Siores E. (2015), Influence of plasma pre-treatment of polytetrafluoroethylene (PTFE) micropowders on the mechanical and tribological performance of Polyethersulfone (PESU)–PTFE composites. Wear, 328, 480487. DOI: 10.1016/j.wear.2015.03.004

    • Search Google Scholar
    • Export Citation
  • [9]

    Zhang H. J. , Zhang Z. Z., Guo F., Liu W. M. (2009), The influence of plasma treatment on the tribological properties of hybrid PTFE/cotton fabric/phenolic composites. Polymer Composites, 30, 15231531. DOI: 10.1002/ pc.20725

    • Search Google Scholar
    • Export Citation
  • [10]

    Šimor M. , Ráhel’ J., Vojtek P., Černák M., Brablec A. (2002), Atmospheric-pressure diffuse coplanar surface discharge for surface treatments. Applied Physics Letters, 81, 27162718. DOI: 10.1063/1.1513185

    • Search Google Scholar
    • Export Citation
  • [11]

    Černák M. , Černáková L., Hudec I., Kováčik D., Zaho ranová A. (2009), Diffuse coplanar surface barrier discharge and its applications for in-line processing of low-added-value materials. European Physical Journal, Applied Physics, 47, 22806. DOI: 10.1051/epjap/2009131

    • Search Google Scholar
    • Export Citation
  • [12]

    Kostov K. G. , Hamia Y. A. A., Mota R. P., dos Santos A. I. R., Nascente P. A. P. (2014), Treatment of polycarbonate by dielectric barrier discharge (DBD) at atmospheric pressure. Journal of Physics: Conference Series, 511, 12075.

    • Search Google Scholar
    • Export Citation
  • [13]

    Mohai M. (2004), XPS MultiQuant: Multimodel XPS quantification software. Surface and Interface Analysis, 36, 828832. DOI: 10.1002/sia.1775

    • Search Google Scholar
    • Export Citation
  • [14]

    Evans S. , Pritchard R. G., Thomas J. M. (1978), Relative differential subshell photoionization cross-sections (MG Kα) from lithium to uranium. Journal of Electron Spectroscopy and Related Phenomena, 14, 341358. DOI: 10.1016/0368-2048(78)80008-5

    • Search Google Scholar
    • Export Citation
  • [15]

    Reilman R. F. , Msezane A., Manson S. T. (1976), Relative intensities in photoelectron spectroscopy of atoms and molecules. Journal of Electron Spectroscopy and Related Phenomena, 8, 389394. DOI: 10.1016/0368- 2048(76)80025-4

    • Search Google Scholar
    • Export Citation
  • [16]

    Al-Maliki H. , Kalácska G. (2017), Friction behavior of engineering polymers treated by atmospheric DBD plasma. Periodica Polytechnica Mechanical Engineering, 61, 303308. DOI: 10.3311/PPme.11249.

    • Search Google Scholar
    • Export Citation
  • [17]

    De Groot P. (2011), Coherence Scanning Interferometry. In: Optical Measurement of Surface Topography, Springer, Berlin, pp. 187208.