Authors:
A. Alhawari University of Victoria, Canada

Search for other papers by A. Alhawari in
Current site
Google Scholar
PubMed
Close
and
P. Mukhopadhyaya University of Victoria, Canada

Search for other papers by P. Mukhopadhyaya in
Current site
Google Scholar
PubMed
Close
Open access

Increasing building energy performance has become an obligatory objective in many countries. Thermal bridge is a major cause of poor energy performance, durability, and indoor air quality of buildings. This paper starts with a review of thermal bridges and their negative impacts on building energy efficiency. Based on published literatures, various types of building thermal bridges are discussed in this paper, including the most effective solutions to diminish their impacts. In addition, various numerical and experimental studies on the balcony thermal bridge are explored. Results show that among all types of thermal bridges, the exposed balcony slab produces the most challenging thermal bridging problem where an integrated thermal and structural design is required. Using low thermal conductivity materials in building construction could help in reducing the impact of thermal bridges. Finally, further investigations are needed to develop more innovative and effective solutions for the balcony thermal bridge.

  • [1]

    Theodosiou T. G. , Papadopoulos A. M. (2008), The impact of thermal bridges on the energy demand of buildings with double brick wall constructions. Energy Build., 40(11), 20832089.

    • Search Google Scholar
    • Export Citation
  • [2]

    Energy Efficiency Trends in Canada 1990 to 2013. 20-Sep-2016. Available at: http://www.nrcan.gc.ca/energy/publications/19030

  • [3]

    Šadauskienė J. , Ramanauskas J., Šeduikytė L., Daukšys M., Vasylius A. (2015), A simplified methodology for evaluating the impact of point thermal bridges on the high-energy performance of a passive house. Sustainability, 7(12), 1668716702.

    • Search Google Scholar
    • Export Citation
  • [4]

    Carbonaro C. , Cascone Y., Fantucci S., Serra V., Perino M., Dutto M. (2015), Energy assessment of a PCM-embedded plaster: embodied energy versus operational energy. Energy Procedia, 78, 32103215.

    • Search Google Scholar
    • Export Citation
  • [5]

    RDH Building Science | Making Buildings Better™. RDH Building Science. Available at: http://www.rdh.com/.

  • [6]

    Roque E. , Santos P. (2017), The effectiveness of thermal insulation in lightweight steel-framed walls with respect to its position. Buildings, 7(1), 13.

    • Search Google Scholar
    • Export Citation
  • [7]

    Building envelope thermal bridging guide released. Available at: https://www.bchydro.com/news/conservation/2014/building-envelope-thermal-bridging.html.

  • [8]

    Larbi A. B. (2005), Statistical modelling of heat transfer for thermal bridges of buildings. Energy Build., 37(9), 945951.

  • [9]

    Ascione F. , Bianco N., de’Rossi F., Turni G., Vanoli G. P. (2012), Different methods for the modelling of thermal bridges into energy simulation programs: Comparisons of accuracy for flat heterogeneous roofs in Italian climates. Appl. Energy, 97 405418.

    • Search Google Scholar
    • Export Citation
  • [10]

    Kośny J., Curcija C., Fontanini A. D., Liu H., Kossecka E., A New Approach for Analysis of Complex Building Envelopes in Whole Building Energy Simulations.

  • [11]

    Totten P. E. , O’Brien S. M., Pazera M. (2008), The effects of thermal bridging at interface conditions. Building Enclosure Science and Technology Meeting, Minneapolis, MN, June 2008.

    • Search Google Scholar
    • Export Citation
  • [12]

    Olsen L. , Radisch N. (2002), Thermal bridges in residential buildings in Denmark. KEA energetická agentura.

  • [13]

    Martin K. , Erkoreka A., Flores I., Odriozola M., Sala J. M. (2011), Problems in the calculation of thermal bridges in dynamic conditions. Energy Build., 43(2), 529535.

    • Search Google Scholar
    • Export Citation
  • [14]

    Erhorn-Kluttig H. , Erhorn H. (2009), Impact of thermal bridges on the energy performance of buildings. Inf. Pap. P148 EPBD Build. Platf.

    • Search Google Scholar
    • Export Citation
  • [15]

    Ibrahim M. , Biwole P. H., Wurtz E., Achard P. (2014), Limiting windows offset thermal bridge losses using a new insulating coating. Appl. Energy, 123, 220231.

    • Search Google Scholar
    • Export Citation
  • [16]

    Lstiburek J. W. (2007), A bridge too far: thermal bridges – steel studs, structural frames, relieving angles and balconies. ASHRAE J., 49(10), 64.

    • Search Google Scholar
    • Export Citation
  • [17]

    Kosny J. , Christian J. E. (1995), Thermal evaluation of several configurations of insulation and structural materials for some metal stud walls. Energy Build., 22(2), 157163.

    • Search Google Scholar
    • Export Citation
  • [18]

    Ghazi Wakili K. , Simmler H., Frank T. (2007), Experimental and numerical thermal analysis of a balcony board with integrated glass fibre reinforced polymer GFRP elements. Energy Build., 39(1), 7681.

    • Search Google Scholar
    • Export Citation
  • [19]

    TRISCO. Available at: http://www.physibel.be/v0n2tr.htm.

  • [20]

    Karabulut K. , Buyruk E., Fertelli A. (2009), Numerical investigation of heat transfer for thermal bridges taking into consideration location of thermal insulation with different geometries. Stroj. Časopis za Teor. Praksu u Stroj., 51(5), 431439.

    • Search Google Scholar
    • Export Citation
  • [21]

    “ANSYS Fluent Software: CFD Simulation.” Available at: //www.ansys.com/products/fluids/ansys-fluent.

  • [22]

    Karabulut K. , Buyruk E., Fertelli A. (2016), Numerical investigation of the effect of insulation on heat transfer of thermal bridges with different types. Therm. Sci., 20(1), 185195.

    • Search Google Scholar
    • Export Citation
  • [23]

    Examples of Structural Thermal Bridges in Buildings – Schöck USA Inc. Available at: http://www.schock-us.com/en_us/examples-of-structural-thermal-bridges-in-buildings.

  • [24]

    HEAT3. Available at: http://www.buildingphysics.com/index-filer/Page691.htm.

  • [25]

    Ge H. , McClung V. R., Zhang S. (2013), Impact of balcony thermal bridges on the overall thermal performance of multi-unit residential buildings: A case study. Energy Build., 60, 163173.

    • Search Google Scholar
    • Export Citation
  • [26]

    THERM | Windows and Daylighting. Available: https://windows.lbl.gov/software/therm.

  • [27]

    eQUEST. Available at: http://www.doe2.com/equest/.

  • [28]

    Susorova I. , Skelton B. (2016), The effect of balcony thermal breaks on building thermal and energy performance. IBPSA-USA J., 6(1).

  • [29]

    Goulouti K. , de Castro J., Vassilopoulos A. P., Keller T. (2014), Thermal performance evaluation of fiber-reinforced polymer thermal breaks for balcony connections. Energy Build., 70, 365371.

    • Search Google Scholar
    • Export Citation
  • [30]

    Goulouti K. , de Castro J., Keller T. (2016), Aramid/glass fiber-reinforced thermal break – thermal and structural performance. Compos. Struct., 136, 113123.

    • Search Google Scholar
    • Export Citation
  • [31]

    Murad C. , Doshi H., Ramakrishnan R. (2015), Impact of insulated concrete curb on concrete balcony slab. Procedia Eng., 118, 10301037.

    • Search Google Scholar
    • Export Citation
  • [32]

    Ge H. , Baba F. (2015), Dynamic effect of thermal bridges on the energy performance of a low-rise residential building. Energy Build., 105, 106118.

    • Search Google Scholar
    • Export Citation
  • [33]

    WUFI® Plus | WUFI (en). Available at: https://wufi.de/en/software/wufi-plus/

  • [34]

    Baba F. , Ge H. (2016), Dynamic effect of balcony thermal bridges on the energy performance of a high-rise residential building in Canada. Energy Build., 116, 7888.

    • Search Google Scholar
    • Export Citation
  • [35]

    Dikarev K. , Berezyuk A., Kuzmenko O., Skokova A. (2016), Experimental and Numerical Thermal Analysis of Joint Connection «Floor Slab – Balcony Slabe» with Integrated Thermal Break. Energy Procedia, 85, 184192.

    • Search Google Scholar
    • Export Citation
  • [36]

    Real S. , Gomes M. G., Moret Rodrigues A., Bogas J. A. (2016), Contribution of structural lightweight aggregate concrete to the reduction of thermal bridging effect in buildings. Constr. Build. Mater., 121, 460470.

    • Search Google Scholar
    • Export Citation
  • [37]

    EnergyPlus | EnergyPlus. Available at: https://energyplus.net/.

  • [38]

    Ben Larbi A., Couchaux M., Bouchair A. (2017), Thermal and mechanical analysis of thermal break with end-plate for attached steel structures. Eng. Struct., 131, 362379.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Ákos, LakatosUniversity of Debrecen, Hungary

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár, University of Debrecen, Hungary

Founding Editor: György Csomós, University of Debrecen, Hungary

Associate Editor: Derek Clements Croome, University of Reading, UK

Associate Editor: Dezső Beke, University of Debrecen, Hungary

Editorial Board

  • Mohammad Nazir AHMAD, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia

    Murat BAKIROV, Center for Materials and Lifetime Management Ltd., Moscow, Russia

    Nicolae BALC, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

    Umberto BERARDI, Toronto Metropolitan University, Toronto, Canada

    Ildikó BODNÁR, University of Debrecen, Debrecen, Hungary

    Sándor BODZÁS, University of Debrecen, Debrecen, Hungary

    Fatih Mehmet BOTSALI, Selçuk University, Konya, Turkey

    Samuel BRUNNER, Empa Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland

    István BUDAI, University of Debrecen, Debrecen, Hungary

    Constantin BUNGAU, University of Oradea, Oradea, Romania

    Shanshan CAI, Huazhong University of Science and Technology, Wuhan, China

    Michele De CARLI, University of Padua, Padua, Italy

    Robert CERNY, Czech Technical University in Prague, Prague, Czech Republic

    Erdem CUCE, Recep Tayyip Erdogan University, Rize, Turkey

    György CSOMÓS, University of Debrecen, Debrecen, Hungary

    Tamás CSOKNYAI, Budapest University of Technology and Economics, Budapest, Hungary

    Anna FORMICA, IASI National Research Council, Rome, Italy

    Alexandru GACSADI, University of Oradea, Oradea, Romania

    Eugen Ioan GERGELY, University of Oradea, Oradea, Romania

    Janez GRUM, University of Ljubljana, Ljubljana, Slovenia

    Géza HUSI, University of Debrecen, Debrecen, Hungary

    Ghaleb A. HUSSEINI, American University of Sharjah, Sharjah, United Arab Emirates

    Nikolay IVANOV, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

    Antal JÁRAI, Eötvös Loránd University, Budapest, Hungary

    Gudni JÓHANNESSON, The National Energy Authority of Iceland, Reykjavik, Iceland

    László KAJTÁR, Budapest University of Technology and Economics, Budapest, Hungary

    Ferenc KALMÁR, University of Debrecen, Debrecen, Hungary

    Tünde KALMÁR, University of Debrecen, Debrecen, Hungary

    Milos KALOUSEK, Brno University of Technology, Brno, Czech Republik

    Jan KOCI, Czech Technical University in Prague, Prague, Czech Republic

    Vaclav KOCI, Czech Technical University in Prague, Prague, Czech Republic

    Imre KOCSIS, University of Debrecen, Debrecen, Hungary

    Imre KOVÁCS, University of Debrecen, Debrecen, Hungary

    Angela Daniela LA ROSA, Norwegian University of Science and Technology, Trondheim, Norway

    Éva LOVRA, Univeqrsity of Debrecen, Debrecen, Hungary

    Elena LUCCHI, Eurac Research, Institute for Renewable Energy, Bolzano, Italy

    Tamás MANKOVITS, University of Debrecen, Debrecen, Hungary

    Igor MEDVED, Slovak Technical University in Bratislava, Bratislava, Slovakia

    Ligia MOGA, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

    Marco MOLINARI, Royal Institute of Technology, Stockholm, Sweden

    Henrieta MORAVCIKOVA, Slovak Academy of Sciences, Bratislava, Slovakia

    Phalguni MUKHOPHADYAYA, University of Victoria, Victoria, Canada

    Balázs NAGY, Budapest University of Technology and Economics, Budapest, Hungary

    Husam S. NAJM, Rutgers University, New Brunswick, USA

    Jozsef NYERS, Subotica Tech College of Applied Sciences, Subotica, Serbia

    Bjarne W. OLESEN, Technical University of Denmark, Lyngby, Denmark

    Stefan ONIGA, North University of Baia Mare, Baia Mare, Romania

    Joaquim Norberto PIRES, Universidade de Coimbra, Coimbra, Portugal

    László POKORÁDI, Óbuda University, Budapest, Hungary

    Roman RABENSEIFER, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik

    Mohammad H. A. SALAH, Hashemite University, Zarqua, Jordan

    Dietrich SCHMIDT, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany

    Lorand SZABÓ, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

    Csaba SZÁSZ, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

    Ioan SZÁVA, Transylvania University of Brasov, Brasov, Romania

    Péter SZEMES, University of Debrecen, Debrecen, Hungary

    Edit SZŰCS, University of Debrecen, Debrecen, Hungary

    Radu TARCA, University of Oradea, Oradea, Romania

    Zsolt TIBA, University of Debrecen, Debrecen, Hungary

    László TÓTH, University of Debrecen, Debrecen, Hungary

    László TÖRÖK, University of Debrecen, Debrecen, Hungary

    Anton TRNIK, Constantine the Philosopher University in Nitra, Nitra, Slovakia

    Ibrahim UZMAY, Erciyes University, Kayseri, Turkey

    Andrea VALLATI, Sapienza University, Rome, Italy

    Tibor VESSELÉNYI, University of Oradea, Oradea, Romania

    Nalinaksh S. VYAS, Indian Institute of Technology, Kanpur, India

    Deborah WHITE, The University of Adelaide, Adelaide, Australia

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • ERIH PLUS
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2023  
Scimago  
Scimago
H-index
11
Scimago
Journal Rank
0.249
Scimago Quartile Score Architecture (Q2)
Engineering (miscellaneous) (Q3)
Environmental Engineering (Q3)
Information Systems (Q4)
Management Science and Operations Research (Q4)
Materials Science (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
2.3
Scopus
CIte Score Rank
Architecture (Q1)
General Engineering (Q2)
Materials Science (miscellaneous) (Q3)
Environmental Engineering (Q3)
Management Science and Operations Research (Q3)
Information Systems (Q3)
 
Scopus
SNIP
0.751


International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waivers available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2024 0 50 34
Oct 2024 0 64 53
Nov 2024 0 58 80
Dec 2024 0 65 81
Jan 2025 0 87 101
Feb 2025 0 41 25
Mar 2025 0 0 0