View More View Less
  • 1 University of Victoria, Canada
Open access

Increasing building energy performance has become an obligatory objective in many countries. Thermal bridge is a major cause of poor energy performance, durability, and indoor air quality of buildings. This paper starts with a review of thermal bridges and their negative impacts on building energy efficiency. Based on published literatures, various types of building thermal bridges are discussed in this paper, including the most effective solutions to diminish their impacts. In addition, various numerical and experimental studies on the balcony thermal bridge are explored. Results show that among all types of thermal bridges, the exposed balcony slab produces the most challenging thermal bridging problem where an integrated thermal and structural design is required. Using low thermal conductivity materials in building construction could help in reducing the impact of thermal bridges. Finally, further investigations are needed to develop more innovative and effective solutions for the balcony thermal bridge.

  • [1]

    Theodosiou T. G. , Papadopoulos A. M. (2008), The impact of thermal bridges on the energy demand of buildings with double brick wall constructions. Energy Build., 40(11), 20832089.

    • Search Google Scholar
    • Export Citation
  • [2]

    Energy Efficiency Trends in Canada 1990 to 2013. 20-Sep-2016. Available at: http://www.nrcan.gc.ca/energy/publications/19030

  • [3]

    Šadauskienė J. , Ramanauskas J., Šeduikytė L., Daukšys M., Vasylius A. (2015), A simplified methodology for evaluating the impact of point thermal bridges on the high-energy performance of a passive house. Sustainability, 7(12), 1668716702.

    • Search Google Scholar
    • Export Citation
  • [4]

    Carbonaro C. , Cascone Y., Fantucci S., Serra V., Perino M., Dutto M. (2015), Energy assessment of a PCM-embedded plaster: embodied energy versus operational energy. Energy Procedia, 78, 32103215.

    • Search Google Scholar
    • Export Citation
  • [5]

    RDH Building Science | Making Buildings Better™. RDH Building Science. Available at: http://www.rdh.com/.

  • [6]

    Roque E. , Santos P. (2017), The effectiveness of thermal insulation in lightweight steel-framed walls with respect to its position. Buildings, 7(1), 13.

    • Search Google Scholar
    • Export Citation
  • [7]

    Building envelope thermal bridging guide released. Available at: https://www.bchydro.com/news/conservation/2014/building-envelope-thermal-bridging.html.

  • [8]

    Larbi A. B. (2005), Statistical modelling of heat transfer for thermal bridges of buildings. Energy Build., 37(9), 945951.

  • [9]

    Ascione F. , Bianco N., de’Rossi F., Turni G., Vanoli G. P. (2012), Different methods for the modelling of thermal bridges into energy simulation programs: Comparisons of accuracy for flat heterogeneous roofs in Italian climates. Appl. Energy, 97 405418.

    • Search Google Scholar
    • Export Citation
  • [10]

    Kośny J., Curcija C., Fontanini A. D., Liu H., Kossecka E., A New Approach for Analysis of Complex Building Envelopes in Whole Building Energy Simulations.

  • [11]

    Totten P. E. , O’Brien S. M., Pazera M. (2008), The effects of thermal bridging at interface conditions. Building Enclosure Science and Technology Meeting, Minneapolis, MN, June 2008.

    • Search Google Scholar
    • Export Citation
  • [12]

    Olsen L. , Radisch N. (2002), Thermal bridges in residential buildings in Denmark. KEA energetická agentura.

  • [13]

    Martin K. , Erkoreka A., Flores I., Odriozola M., Sala J. M. (2011), Problems in the calculation of thermal bridges in dynamic conditions. Energy Build., 43(2), 529535.

    • Search Google Scholar
    • Export Citation
  • [14]

    Erhorn-Kluttig H. , Erhorn H. (2009), Impact of thermal bridges on the energy performance of buildings. Inf. Pap. P148 EPBD Build. Platf.

    • Search Google Scholar
    • Export Citation
  • [15]

    Ibrahim M. , Biwole P. H., Wurtz E., Achard P. (2014), Limiting windows offset thermal bridge losses using a new insulating coating. Appl. Energy, 123, 220231.

    • Search Google Scholar
    • Export Citation
  • [16]

    Lstiburek J. W. (2007), A bridge too far: thermal bridges – steel studs, structural frames, relieving angles and balconies. ASHRAE J., 49(10), 64.

    • Search Google Scholar
    • Export Citation
  • [17]

    Kosny J. , Christian J. E. (1995), Thermal evaluation of several configurations of insulation and structural materials for some metal stud walls. Energy Build., 22(2), 157163.

    • Search Google Scholar
    • Export Citation
  • [18]

    Ghazi Wakili K. , Simmler H., Frank T. (2007), Experimental and numerical thermal analysis of a balcony board with integrated glass fibre reinforced polymer GFRP elements. Energy Build., 39(1), 7681.

    • Search Google Scholar
    • Export Citation
  • [19]

    TRISCO. Available at: http://www.physibel.be/v0n2tr.htm.

  • [20]

    Karabulut K. , Buyruk E., Fertelli A. (2009), Numerical investigation of heat transfer for thermal bridges taking into consideration location of thermal insulation with different geometries. Stroj. Časopis za Teor. Praksu u Stroj., 51(5), 431439.

    • Search Google Scholar
    • Export Citation
  • [21]

    “ANSYS Fluent Software: CFD Simulation.” Available at: //www.ansys.com/products/fluids/ansys-fluent.

  • [22]

    Karabulut K. , Buyruk E., Fertelli A. (2016), Numerical investigation of the effect of insulation on heat transfer of thermal bridges with different types. Therm. Sci., 20(1), 185195.

    • Search Google Scholar
    • Export Citation
  • [23]

    Examples of Structural Thermal Bridges in Buildings – Schöck USA Inc. Available at: http://www.schock-us.com/en_us/examples-of-structural-thermal-bridges-in-buildings.

  • [24]

    HEAT3. Available at: http://www.buildingphysics.com/index-filer/Page691.htm.

  • [25]

    Ge H. , McClung V. R., Zhang S. (2013), Impact of balcony thermal bridges on the overall thermal performance of multi-unit residential buildings: A case study. Energy Build., 60, 163173.

    • Search Google Scholar
    • Export Citation
  • [26]

    THERM | Windows and Daylighting. Available: https://windows.lbl.gov/software/therm.

  • [27]

    eQUEST. Available at: http://www.doe2.com/equest/.

  • [28]

    Susorova I. , Skelton B. (2016), The effect of balcony thermal breaks on building thermal and energy performance. IBPSA-USA J., 6(1).

  • [29]

    Goulouti K. , de Castro J., Vassilopoulos A. P., Keller T. (2014), Thermal performance evaluation of fiber-reinforced polymer thermal breaks for balcony connections. Energy Build., 70, 365371.

    • Search Google Scholar
    • Export Citation
  • [30]

    Goulouti K. , de Castro J., Keller T. (2016), Aramid/glass fiber-reinforced thermal break – thermal and structural performance. Compos. Struct., 136, 113123.

    • Search Google Scholar
    • Export Citation
  • [31]

    Murad C. , Doshi H., Ramakrishnan R. (2015), Impact of insulated concrete curb on concrete balcony slab. Procedia Eng., 118, 10301037.

    • Search Google Scholar
    • Export Citation
  • [32]

    Ge H. , Baba F. (2015), Dynamic effect of thermal bridges on the energy performance of a low-rise residential building. Energy Build., 105, 106118.

    • Search Google Scholar
    • Export Citation
  • [33]

    WUFI® Plus | WUFI (en). Available at: https://wufi.de/en/software/wufi-plus/

  • [34]

    Baba F. , Ge H. (2016), Dynamic effect of balcony thermal bridges on the energy performance of a high-rise residential building in Canada. Energy Build., 116, 7888.

    • Search Google Scholar
    • Export Citation
  • [35]

    Dikarev K. , Berezyuk A., Kuzmenko O., Skokova A. (2016), Experimental and Numerical Thermal Analysis of Joint Connection «Floor Slab – Balcony Slabe» with Integrated Thermal Break. Energy Procedia, 85, 184192.

    • Search Google Scholar
    • Export Citation
  • [36]

    Real S. , Gomes M. G., Moret Rodrigues A., Bogas J. A. (2016), Contribution of structural lightweight aggregate concrete to the reduction of thermal bridging effect in buildings. Constr. Build. Mater., 121, 460470.

    • Search Google Scholar
    • Export Citation
  • [37]

    EnergyPlus | EnergyPlus. Available at: https://energyplus.net/.

  • [38]

    Ben Larbi A., Couchaux M., Bouchair A. (2017), Thermal and mechanical analysis of thermal break with end-plate for attached steel structures. Eng. Struct., 131, 362379.

    • Search Google Scholar
    • Export Citation
The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 15 48
Mar 2021 0 21 85
Apr 2021 0 14 46
May 2021 0 10 30
Jun 2021 0 25 42
Jul 2021 0 15 31
Aug 2021 0 0 0