Authors:
L. F. Al-Hyari Budapest University of Technology and Economics, Budapest, Hungary

Search for other papers by L. F. Al-Hyari in
Current site
Google Scholar
PubMed
Close
and
M. Kassai Budapest University of Technology and Economics, Budapest, Hungary

Search for other papers by M. Kassai in
Current site
Google Scholar
PubMed
Close
Open access

The statistical data show that the application of active cooling is spread widely in residential and commercial buildings. In these buildings, the ventilation is significantly increased in the whole energy consumption. There are similar problems in the operation of post-insulation of existing buildings. In this case, the energy consumption of the ventilation system gives a major proportion of the whole building services energy consumption. The opportuneness of this research shows that the actual available calculation procedures and technical designing data are only rough approximations for analyzing the energy consumption of air handling units and the energy saved by the integrated heat or energy recovery units. There are not exact methods and unequivocal technical data. In previous researches, the production and development companies have not investigated the effectiveness of the energy recovery units under difference ambient air conditions and the period of defrost cycle when the heat recovery can only partly operate under difference ambient air temperatures. During this term, a re-heater has to fully heat up the ambient cold air to the temperature of supplied air and generate the required heating demand to provide the necessary indoor air temperature.

  • [1]

    Poos T. , Szabo V., Varju E., Sebesi V. (2016), Determination of drying rate at herbs drying with ambient air, Proceedings of the 4th International Scientific Conference on Advances in Mechanical Engineering (ISCAME 2016). Debrecen, Hungary, pp. 408413.

    • Search Google Scholar
    • Export Citation
  • [2]

    Kalmár F. (2016), Interrelation between glazing and summer operative temperature in buildings. International Review of Applied Sciences and Engineering, 1, 5160.

    • Search Google Scholar
    • Export Citation
  • [3]

    Kalmár T. , Kalmár F. (2010), Comfort and energy analysis of heating up. International Review of Applied Sciences and Engineering, 1–2, 3543.

    • Search Google Scholar
    • Export Citation
  • [4]

    Nyers J. (2016), A new analytical method for defining the pump’s power optimum of a water-to-water heat pump heating system using COP. Thermal Science, DOI: 10.2298/TSCI161110324N.

    • Search Google Scholar
    • Export Citation
  • [5]

    Nyers J. , Kajtar L., Slavica T., Nyers, A. (2014), Investment-savings method for energy-economic optimization of external wall thermal insulation thickness. Energy and Buildings, 86, 268274.

    • Search Google Scholar
    • Export Citation
  • [6]

    Nyers J. , Garbai L., Nyers A. (2015), A modified mathematical model of heat pump’s condenser for analytical optimization. Energy, 80, 706714.

    • Search Google Scholar
    • Export Citation
  • [7]

    Sánta R. , Lászó G., Igor F. (2017), Numerical investigation of the heat pump system. Journal of Thermal Analysis and Calorimetry, 130(2), 11331144.

    • Search Google Scholar
    • Export Citation
  • [8]

    Golubovic M. , Hettiarachchi H., Worek W. (2006), Sorption properties for different types of molecular sieve and their influence on optimum dehumidification performance of desiccant wheels. International Journal of Heat and Mass Transfer, 49, 28022809.

    • Search Google Scholar
    • Export Citation
  • [9]

    Sparrow E. , Tong J., Johnson M., Martin G. (2007), Heat and mass transfer characteristics of a rotating regenerative total energy wheel. International Journal of Heat and Mass Transfer, 50, 16311636.

    • Search Google Scholar
    • Export Citation
  • [10]

    Fathieh F. , Nezakat M., Evitts R., Simonson C. (2017), Effects of physical and sorption properties of desiccant coating on performance of energy wheels. Journal of Heat Transfer-Transactions of the ASME Volume, 139/062601-1.

    • Search Google Scholar
    • Export Citation
  • [11]

    Wallin J. , Claesson J. (2014), Improving heat recovery using retrofitted heat pump in air handling unit with energy wheel. Applied Thermal Engineering, 62, 823e829.

    • Search Google Scholar
    • Export Citation
  • [12]

    Rouleta C. , Heidtb F., Foradinic F., Pibiria M. (2001), Real heat recovery with air handling units. Energy and Buildings, 33, 495502.

  • [13]

    Abe O. , Simonson C., Besant R., Shang W. (2006), Effectiveness of energy wheels from transient measurements. Part I: Prediction of effectiveness and uncertainty. International Journal of Heat and Mass Transfer, 49, 5262.

    • Search Google Scholar
    • Export Citation
  • [14]

    Angrisani G. , Minichiello F., Roselli C., Sasso M. (2012), Experimental analysis on the dehumidification and thermal performance of a desiccant wheel. Applied Energy, 92, 563572.

    • Search Google Scholar
    • Export Citation
  • [15]

    Zhang L. , Niu J. (2002), Performance comparisons of desiccant wheels for air dehumidification and enthalpy recovery. Applied Thermal Engineering, 22, 13471367.

    • Search Google Scholar
    • Export Citation
  • [16]

    Simonson C. , Besant R. (1997), Heat and moisture transfer in energy wheels during sorption, condensation, and frosting conditions. Journal of Heat Transfer-Transactions of the ASME Volume, 120/699.

    • Search Google Scholar
    • Export Citation
  • [17]

    Nasr M. , Fauchoux M., Besant R., Simonson C. (2014), A review of frosting in air-to-air energy exchangers. Renewable and Sustainable Energy Reviews, 30, 538554.

    • Search Google Scholar
    • Export Citation
  • [18]

    Bareschino P. , Diglio G., Pepe F., Angrisani G., Roselli C., Sasso M. (2015), Modelling of a rotary desiccant wheel: Numerical validation of a variable properties model. Applied Thermal Engineering, 78, 640e648.

    • Search Google Scholar
    • Export Citation
  • [19]

    Goldsworthy M. , White S. (2012), Limiting performance mechanisms in desiccant wheel dehumidification. Applied Thermal Engineering, 44, 21e28.

    • Search Google Scholar
    • Export Citation
  • [20]

    Jeong J. , Mumma S. (2005), Practical thermal performance correlations for molecular sieve and silica gel loaded enthalpy wheels. Applied Thermal Engineering, 25, 719740.

    • Search Google Scholar
    • Export Citation
  • [21]

    Chung H. , Lee J., Kang C., Yongchan K. (2016), Numerical analysis of the performance characteristics and optimal design of a plastic rotary regenerator considering leakage and adsorption. Applied Thermal Engineering, 109, 227237.

    • Search Google Scholar
    • Export Citation
  • [22]

    Neti S. , Wolfe E. I. (2000), Measurements of effectiveness in a silica gel rotary exchanger. Applied Thermal Engineering, 20, 309322.

    • Search Google Scholar
    • Export Citation
  • [23]

    Calay R. , Wanga W. (2013), A hybrid energy efficient building ventilation system. Applied Thermal Engineering, 57, 7e13.

  • [24]

    De Antonellis S. , Intini M., Joppolo C., Pedranzini F. (2014), Experimental analysis and practical effectiveness correlations of enthalpy wheels. Energy and Buildings, 84, 316323.

    • Search Google Scholar
    • Export Citation
  • [25]

    Nóbregaa C. E. L. , Brumb N. C. L. (2012), An analysis of the heat and mass transfer roles in air dehumidification by solid desiccants. Energy and Buildings, 50, 251258.

    • Search Google Scholar
    • Export Citation
  • [26]

    Smith K. , Svendsen S. (2016), The effect of a rotary heat exchanger in room-based ventilation on indoor humidity in existing apartments in temperate climates. Energy and Buildings, 116, 349361.

    • Search Google Scholar
    • Export Citation
  • [27]

    Ruan W. , Qu M., Horton T. (2012), Modeling analysis of an enthalpy recovery wheel with purge air. International Journal of Heat and Mass Transfer, 55, 46654672.

    • Search Google Scholar
    • Export Citation
  • [28]

    Angrisani G. , Roselli C., Sasso M. (2013), Effect of rotational speed on the performances of a desiccant wheel. Applied Energy, 104, 268275.

    • Search Google Scholar
    • Export Citation
  • [29]

    Angrisani G. , Capozzoli A., Minichiello F., Roselli C., Sasso M. (2011), Desiccant wheel regenerated by thermal energy from a microcogenerator: Experimental assessment of the performances. Applied Energy, 88, 13541365.

    • Search Google Scholar
    • Export Citation
  • [30]

    Fathieh F. , Nasr M., Sadeh S., Besant R., Evitts R., Müller J., Simonson C. (2016), Determination of air-to-air energy wheels latent effectiveness using humidity step test data. International Journal of Heat and Mass Transfer, 103, 501515.

    • Search Google Scholar
    • Export Citation
  • [31]

    Ali M. , Vukovic V., Sahir M., Basciotti D. (2013), Development and validation of a desiccant wheel model calibrated under transient operating conditions. Applied Thermal Engineering, 61, 469480.

    • Search Google Scholar
    • Export Citation
  • [32]

    Goodarzia G. , Thirukonda N., Heidari S., Akbarzadeh A., Date A. (2017), Performance evaluation of solid desiccant wheel regenerated by waste heat or renewable energy. Energy Procedia, 110, 434439.

    • Search Google Scholar
    • Export Citation
  • [33]

    Yamaguchi S. , Saito K. (2013), Numerical and experimental performance analysis of rotary desiccant wheels. International Journal of Heat and Mass Transfer, 60, 5160.

    • Search Google Scholar
    • Export Citation
  • [34]

    El-Maghlany W. , ElHefni A., ElHelw M., Attia A. (2017), Novel air conditioning system configuration combining sensible and desiccant enthalpy wheels. Applied Thermal Engineering, 127, 115.

    • Search Google Scholar
    • Export Citation
  • [35]

    Dehabadi L. , Fathieh F., Wilson L., Evitts R., Simonson C. (2017), Study of dehumidification and regeneration in a starch coated energy wheel. American Chemical Society, ACS Sustainable Chem. Eng., 5, 221223.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Ákos, LakatosUniversity of Debrecen, Hungary

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár, University of Debrecen, Hungary

Founding Editor: György Csomós, University of Debrecen, Hungary

Associate Editor: Derek Clements Croome, University of Reading, UK

Associate Editor: Dezső Beke, University of Debrecen, Hungary

Editorial Board

  • Mohammad Nazir AHMAD, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia

    Murat BAKIROV, Center for Materials and Lifetime Management Ltd., Moscow, Russia

    Nicolae BALC, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

    Umberto BERARDI, Toronto Metropolitan University, Toronto, Canada

    Ildikó BODNÁR, University of Debrecen, Debrecen, Hungary

    Sándor BODZÁS, University of Debrecen, Debrecen, Hungary

    Fatih Mehmet BOTSALI, Selçuk University, Konya, Turkey

    Samuel BRUNNER, Empa Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland

    István BUDAI, University of Debrecen, Debrecen, Hungary

    Constantin BUNGAU, University of Oradea, Oradea, Romania

    Shanshan CAI, Huazhong University of Science and Technology, Wuhan, China

    Michele De CARLI, University of Padua, Padua, Italy

    Robert CERNY, Czech Technical University in Prague, Prague, Czech Republic

    Erdem CUCE, Recep Tayyip Erdogan University, Rize, Turkey

    György CSOMÓS, University of Debrecen, Debrecen, Hungary

    Tamás CSOKNYAI, Budapest University of Technology and Economics, Budapest, Hungary

    Anna FORMICA, IASI National Research Council, Rome, Italy

    Alexandru GACSADI, University of Oradea, Oradea, Romania

    Eugen Ioan GERGELY, University of Oradea, Oradea, Romania

    Janez GRUM, University of Ljubljana, Ljubljana, Slovenia

    Géza HUSI, University of Debrecen, Debrecen, Hungary

    Ghaleb A. HUSSEINI, American University of Sharjah, Sharjah, United Arab Emirates

    Nikolay IVANOV, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

    Antal JÁRAI, Eötvös Loránd University, Budapest, Hungary

    Gudni JÓHANNESSON, The National Energy Authority of Iceland, Reykjavik, Iceland

    László KAJTÁR, Budapest University of Technology and Economics, Budapest, Hungary

    Ferenc KALMÁR, University of Debrecen, Debrecen, Hungary

    Tünde KALMÁR, University of Debrecen, Debrecen, Hungary

    Milos KALOUSEK, Brno University of Technology, Brno, Czech Republik

    Jan KOCI, Czech Technical University in Prague, Prague, Czech Republic

    Vaclav KOCI, Czech Technical University in Prague, Prague, Czech Republic

    Imre KOCSIS, University of Debrecen, Debrecen, Hungary

    Imre KOVÁCS, University of Debrecen, Debrecen, Hungary

    Angela Daniela LA ROSA, Norwegian University of Science and Technology, Trondheim, Norway

    Éva LOVRA, Univeqrsity of Debrecen, Debrecen, Hungary

    Elena LUCCHI, Eurac Research, Institute for Renewable Energy, Bolzano, Italy

    Tamás MANKOVITS, University of Debrecen, Debrecen, Hungary

    Igor MEDVED, Slovak Technical University in Bratislava, Bratislava, Slovakia

    Ligia MOGA, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

    Marco MOLINARI, Royal Institute of Technology, Stockholm, Sweden

    Henrieta MORAVCIKOVA, Slovak Academy of Sciences, Bratislava, Slovakia

    Phalguni MUKHOPHADYAYA, University of Victoria, Victoria, Canada

    Balázs NAGY, Budapest University of Technology and Economics, Budapest, Hungary

    Husam S. NAJM, Rutgers University, New Brunswick, USA

    Jozsef NYERS, Subotica Tech College of Applied Sciences, Subotica, Serbia

    Bjarne W. OLESEN, Technical University of Denmark, Lyngby, Denmark

    Stefan ONIGA, North University of Baia Mare, Baia Mare, Romania

    Joaquim Norberto PIRES, Universidade de Coimbra, Coimbra, Portugal

    László POKORÁDI, Óbuda University, Budapest, Hungary

    Roman RABENSEIFER, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik

    Mohammad H. A. SALAH, Hashemite University, Zarqua, Jordan

    Dietrich SCHMIDT, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany

    Lorand SZABÓ, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

    Csaba SZÁSZ, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

    Ioan SZÁVA, Transylvania University of Brasov, Brasov, Romania

    Péter SZEMES, University of Debrecen, Debrecen, Hungary

    Edit SZŰCS, University of Debrecen, Debrecen, Hungary

    Radu TARCA, University of Oradea, Oradea, Romania

    Zsolt TIBA, University of Debrecen, Debrecen, Hungary

    László TÓTH, University of Debrecen, Debrecen, Hungary

    László TÖRÖK, University of Debrecen, Debrecen, Hungary

    Anton TRNIK, Constantine the Philosopher University in Nitra, Nitra, Slovakia

    Ibrahim UZMAY, Erciyes University, Kayseri, Turkey

    Andrea VALLATI, Sapienza University, Rome, Italy

    Tibor VESSELÉNYI, University of Oradea, Oradea, Romania

    Nalinaksh S. VYAS, Indian Institute of Technology, Kanpur, India

    Deborah WHITE, The University of Adelaide, Adelaide, Australia

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • ERIH PLUS
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2023  
Scimago  
Scimago
H-index
11
Scimago
Journal Rank
0.249
Scimago Quartile Score Architecture (Q2)
Engineering (miscellaneous) (Q3)
Environmental Engineering (Q3)
Information Systems (Q4)
Management Science and Operations Research (Q4)
Materials Science (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
2.3
Scopus
CIte Score Rank
Architecture (Q1)
General Engineering (Q2)
Materials Science (miscellaneous) (Q3)
Environmental Engineering (Q3)
Management Science and Operations Research (Q3)
Information Systems (Q3)
 
Scopus
SNIP
0.751


International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waivers available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 0 15 9
Sep 2024 0 12 7
Oct 2024 0 21 9
Nov 2024 0 7 4
Dec 2024 0 1 0
Jan 2025 0 5 4
Feb 2025 0 0 0