View More View Less
  • 1 Budapest University of Technology and Economics, Budapest, Hungary
Open access

The statistical data show that the application of active cooling is spread widely in residential and commercial buildings. In these buildings, the ventilation is significantly increased in the whole energy consumption. There are similar problems in the operation of post-insulation of existing buildings. In this case, the energy consumption of the ventilation system gives a major proportion of the whole building services energy consumption. The opportuneness of this research shows that the actual available calculation procedures and technical designing data are only rough approximations for analyzing the energy consumption of air handling units and the energy saved by the integrated heat or energy recovery units. There are not exact methods and unequivocal technical data. In previous researches, the production and development companies have not investigated the effectiveness of the energy recovery units under difference ambient air conditions and the period of defrost cycle when the heat recovery can only partly operate under difference ambient air temperatures. During this term, a re-heater has to fully heat up the ambient cold air to the temperature of supplied air and generate the required heating demand to provide the necessary indoor air temperature.

  • [1]

    Poos T. , Szabo V., Varju E., Sebesi V. (2016), Determination of drying rate at herbs drying with ambient air, Proceedings of the 4th International Scientific Conference on Advances in Mechanical Engineering (ISCAME 2016). Debrecen, Hungary, pp. 408413.

    • Search Google Scholar
    • Export Citation
  • [2]

    Kalmár F. (2016), Interrelation between glazing and summer operative temperature in buildings. International Review of Applied Sciences and Engineering, 1, 5160.

    • Search Google Scholar
    • Export Citation
  • [3]

    Kalmár T. , Kalmár F. (2010), Comfort and energy analysis of heating up. International Review of Applied Sciences and Engineering, 1–2, 3543.

    • Search Google Scholar
    • Export Citation
  • [4]

    Nyers J. (2016), A new analytical method for defining the pump’s power optimum of a water-to-water heat pump heating system using COP. Thermal Science, DOI: 10.2298/TSCI161110324N.

    • Search Google Scholar
    • Export Citation
  • [5]

    Nyers J. , Kajtar L., Slavica T., Nyers, A. (2014), Investment-savings method for energy-economic optimization of external wall thermal insulation thickness. Energy and Buildings, 86, 268274.

    • Search Google Scholar
    • Export Citation
  • [6]

    Nyers J. , Garbai L., Nyers A. (2015), A modified mathematical model of heat pump’s condenser for analytical optimization. Energy, 80, 706714.

    • Search Google Scholar
    • Export Citation
  • [7]

    Sánta R. , Lászó G., Igor F. (2017), Numerical investigation of the heat pump system. Journal of Thermal Analysis and Calorimetry, 130(2), 11331144.

    • Search Google Scholar
    • Export Citation
  • [8]

    Golubovic M. , Hettiarachchi H., Worek W. (2006), Sorption properties for different types of molecular sieve and their influence on optimum dehumidification performance of desiccant wheels. International Journal of Heat and Mass Transfer, 49, 28022809.

    • Search Google Scholar
    • Export Citation
  • [9]

    Sparrow E. , Tong J., Johnson M., Martin G. (2007), Heat and mass transfer characteristics of a rotating regenerative total energy wheel. International Journal of Heat and Mass Transfer, 50, 16311636.

    • Search Google Scholar
    • Export Citation
  • [10]

    Fathieh F. , Nezakat M., Evitts R., Simonson C. (2017), Effects of physical and sorption properties of desiccant coating on performance of energy wheels. Journal of Heat Transfer-Transactions of the ASME Volume, 139/062601-1.

    • Search Google Scholar
    • Export Citation
  • [11]

    Wallin J. , Claesson J. (2014), Improving heat recovery using retrofitted heat pump in air handling unit with energy wheel. Applied Thermal Engineering, 62, 823e829.

    • Search Google Scholar
    • Export Citation
  • [12]

    Rouleta C. , Heidtb F., Foradinic F., Pibiria M. (2001), Real heat recovery with air handling units. Energy and Buildings, 33, 495502.

  • [13]

    Abe O. , Simonson C., Besant R., Shang W. (2006), Effectiveness of energy wheels from transient measurements. Part I: Prediction of effectiveness and uncertainty. International Journal of Heat and Mass Transfer, 49, 5262.

    • Search Google Scholar
    • Export Citation
  • [14]

    Angrisani G. , Minichiello F., Roselli C., Sasso M. (2012), Experimental analysis on the dehumidification and thermal performance of a desiccant wheel. Applied Energy, 92, 563572.

    • Search Google Scholar
    • Export Citation
  • [15]

    Zhang L. , Niu J. (2002), Performance comparisons of desiccant wheels for air dehumidification and enthalpy recovery. Applied Thermal Engineering, 22, 13471367.

    • Search Google Scholar
    • Export Citation
  • [16]

    Simonson C. , Besant R. (1997), Heat and moisture transfer in energy wheels during sorption, condensation, and frosting conditions. Journal of Heat Transfer-Transactions of the ASME Volume, 120/699.

    • Search Google Scholar
    • Export Citation
  • [17]

    Nasr M. , Fauchoux M., Besant R., Simonson C. (2014), A review of frosting in air-to-air energy exchangers. Renewable and Sustainable Energy Reviews, 30, 538554.

    • Search Google Scholar
    • Export Citation
  • [18]

    Bareschino P. , Diglio G., Pepe F., Angrisani G., Roselli C., Sasso M. (2015), Modelling of a rotary desiccant wheel: Numerical validation of a variable properties model. Applied Thermal Engineering, 78, 640e648.

    • Search Google Scholar
    • Export Citation
  • [19]

    Goldsworthy M. , White S. (2012), Limiting performance mechanisms in desiccant wheel dehumidification. Applied Thermal Engineering, 44, 21e28.

    • Search Google Scholar
    • Export Citation
  • [20]

    Jeong J. , Mumma S. (2005), Practical thermal performance correlations for molecular sieve and silica gel loaded enthalpy wheels. Applied Thermal Engineering, 25, 719740.

    • Search Google Scholar
    • Export Citation
  • [21]

    Chung H. , Lee J., Kang C., Yongchan K. (2016), Numerical analysis of the performance characteristics and optimal design of a plastic rotary regenerator considering leakage and adsorption. Applied Thermal Engineering, 109, 227237.

    • Search Google Scholar
    • Export Citation
  • [22]

    Neti S. , Wolfe E. I. (2000), Measurements of effectiveness in a silica gel rotary exchanger. Applied Thermal Engineering, 20, 309322.

    • Search Google Scholar
    • Export Citation
  • [23]

    Calay R. , Wanga W. (2013), A hybrid energy efficient building ventilation system. Applied Thermal Engineering, 57, 7e13.

  • [24]

    De Antonellis S. , Intini M., Joppolo C., Pedranzini F. (2014), Experimental analysis and practical effectiveness correlations of enthalpy wheels. Energy and Buildings, 84, 316323.

    • Search Google Scholar
    • Export Citation
  • [25]

    Nóbregaa C. E. L. , Brumb N. C. L. (2012), An analysis of the heat and mass transfer roles in air dehumidification by solid desiccants. Energy and Buildings, 50, 251258.

    • Search Google Scholar
    • Export Citation
  • [26]

    Smith K. , Svendsen S. (2016), The effect of a rotary heat exchanger in room-based ventilation on indoor humidity in existing apartments in temperate climates. Energy and Buildings, 116, 349361.

    • Search Google Scholar
    • Export Citation
  • [27]

    Ruan W. , Qu M., Horton T. (2012), Modeling analysis of an enthalpy recovery wheel with purge air. International Journal of Heat and Mass Transfer, 55, 46654672.

    • Search Google Scholar
    • Export Citation
  • [28]

    Angrisani G. , Roselli C., Sasso M. (2013), Effect of rotational speed on the performances of a desiccant wheel. Applied Energy, 104, 268275.

    • Search Google Scholar
    • Export Citation
  • [29]

    Angrisani G. , Capozzoli A., Minichiello F., Roselli C., Sasso M. (2011), Desiccant wheel regenerated by thermal energy from a microcogenerator: Experimental assessment of the performances. Applied Energy, 88, 13541365.

    • Search Google Scholar
    • Export Citation
  • [30]

    Fathieh F. , Nasr M., Sadeh S., Besant R., Evitts R., Müller J., Simonson C. (2016), Determination of air-to-air energy wheels latent effectiveness using humidity step test data. International Journal of Heat and Mass Transfer, 103, 501515.

    • Search Google Scholar
    • Export Citation
  • [31]

    Ali M. , Vukovic V., Sahir M., Basciotti D. (2013), Development and validation of a desiccant wheel model calibrated under transient operating conditions. Applied Thermal Engineering, 61, 469480.

    • Search Google Scholar
    • Export Citation
  • [32]

    Goodarzia G. , Thirukonda N., Heidari S., Akbarzadeh A., Date A. (2017), Performance evaluation of solid desiccant wheel regenerated by waste heat or renewable energy. Energy Procedia, 110, 434439.

    • Search Google Scholar
    • Export Citation
  • [33]

    Yamaguchi S. , Saito K. (2013), Numerical and experimental performance analysis of rotary desiccant wheels. International Journal of Heat and Mass Transfer, 60, 5160.

    • Search Google Scholar
    • Export Citation
  • [34]

    El-Maghlany W. , ElHefni A., ElHelw M., Attia A. (2017), Novel air conditioning system configuration combining sensible and desiccant enthalpy wheels. Applied Thermal Engineering, 127, 115.

    • Search Google Scholar
    • Export Citation
  • [35]

    Dehabadi L. , Fathieh F., Wilson L., Evitts R., Simonson C. (2017), Study of dehumidification and regeneration in a starch coated energy wheel. American Chemical Society, ACS Sustainable Chem. Eng., 5, 221223.

    • Search Google Scholar
    • Export Citation
The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • B. Nagy, Budapest University of Technology and Economics, Budapest, Hungary
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 1
Jul 2021 0 3 5
Aug 2021 0 2 2
Sep 2021 0 7 9
Oct 2021 0 9 12
Nov 2021 0 16 8
Dec 2021 0 0 0