Authors: J. Szabo1 and L. Kajtar1
View More View Less
  • 1 Budapest University of Technology and Economics, H-1111 Budapest, Műegyetem rakpart 3–9, Hungary
Open access

It is a prime aim to ensure a suitable comfort level in case of office buildings. The productivity of office employees is directly influenced by the comfort. Thermal discomfort and poor indoor air quality deteriorate the intensity and quality of human work. We investigated the comfort in office buildings with on-site measurements during the summer season. The office buildings were operating with different HVAC (Heating, Ventilating and Air-Conditioning) systems: ducted fan-coil with suspended ceiling, installation, non-ducted fan-coil with floor-mounted installation, active chilled beam with fresh air supply.

We evaluated the thermal comfort under PMV (Predicted Mean Vote), PPD (Predicted Percentage of Dissatisfied), the local discomfort based on DR (Draught Rate) and the IAQ (Indoor Air Quality) based on carbon dioxide concentration. The comfort measurements were evaluated. The measurements were evaluated with scientific research methods, comfort categories based on the requirements of CR 1752. The results of this comparison were presented in this article.

  • [1]

    Fanger P. O. (1967), Calculation of thermal comfort: introduction of a basic comfort equation. ASHRAE Trans. 73, III.4.1III.4.20.

  • [2]

    Croome D. J. , Gan G., Awbi H. B. (1993), Thermal comfort and air quality in offices. Indoor Air, Helsinki, 6, 3742.

  • [3]

    Kosonen R. , Tan F. (2004), Assessment of productivity loss in air-conditioned buildings using PMV index. Energy and Buildings, 36(10 spec. iss.), 987993.

    • Search Google Scholar
    • Export Citation
  • [4]

    Lan L. , Wargocki P., Lian Z. (2011), Quantitative measurement of productivity loss due to thermal discomfort. Energy and Buildings, Vol. 43(5 spec. iss.), 10571062.

    • Search Google Scholar
    • Export Citation
  • [5]

    Erdősi I. , Kajtár L., Bánhidi L. (1997), Thermal comfort in climatized office buildings. Washington, USA. Healthy Buildings Conference. Proceedings Vol. 2, pp. 207213.

    • Search Google Scholar
    • Export Citation
  • [6]

    Erdősi I. , Kajtár L., Bánhidi L. (1998), Thermal comfort in climatized office building in winter. Atlanta, USA. Design, Construction and Operation of Healthy Building/ ASHRAE, pp. 179185.

    • Search Google Scholar
    • Export Citation
  • [7]

    Kajtár L. , Leitner A. (2007), High Quality Thermal Environment by Chilled Ceiling in Office Building. 9th REHVA World Congress Clima “Well-Being Indoors”, Helsinki, 6 p.

    • Search Google Scholar
    • Export Citation
  • [8]

    van Hoof J. (2008), Fourty years of Fanger’s model of thermal comfort: comfort for all. Indoor Air Journal, 18, 182201.

  • [9]

    Howell W. C. , Kennedy P. A. (1979), Field validation of the Fanger thermal comfort model. Hum. Factors, 21, 229239.

  • [10]

    van Hoof J. , Hensen J. M. L. (2007), Quantifying of relevance of adaptive thermal comfort models in moderate thermal climate zones. Building and Environment, 42, 156170.

    • Search Google Scholar
    • Export Citation
  • [11]

    CR 1752 (1999), Ventilation for buildings – Design criteria for the indoor environment Bruxelles: European Committee for Standardisation.

  • [12]

    CEN Standard EN 15251 (2007), Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics Bruxelles: European Committee for Standardisation.

  • [13]

    ISO 7730:2005(E), Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Geneva: International Standards Organization, 2005.

  • [14]

    ASHRAE Standard 55-04 (2004), Thermal Environmental Conditions for Human Occupancy, Atlanta, American Society of Heating Refrigeration and Air-conditioning Engineers.

  • [15]

    CIBSE (2006), CIBSE Guide A chapter 1: Environmental criteria for design. London, Chartered Institution of Building Services Engineers.

  • [16]

    Kajtár L. , Bánhidi L., Bakó-Bíró Zs. (2001), Thermal and air quality comfort in the Hungarian office buildings. Miami Beach, USA. Proceedings of the Second NSF International Conference on Indoor Air Health, pp. 270278.

    • Search Google Scholar
    • Export Citation
  • [17]

    Nyers J. , Pek Z. (2014), Mathematical Model of Heat Pumps’ Coaxial Evaporator with Distributed Parameters. Acta Polytechnica Hungarica, 11(10), 4154.

    • Search Google Scholar
    • Export Citation
The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 3 3
May 2021 0 4 5
Jun 2021 0 5 8
Jul 2021 0 8 5
Aug 2021 0 11 6
Sep 2021 0 2 2
Oct 2021 0 0 0