Authors: B. Bokor1 and L. Kajtár1
View More View Less
  • 1 Budapest University of Technology and Economics, H-1111 Budapest, Műegyetem rakpart 3–9, Hungary
Open access

One of the easiest ways to integrate renewable sources of energy into the heat producing system of a building is the application of transpired solar collectors. They are widespread in North America, where air heating is a common heating alternative, but they are gaining bigger share in the European solar thermal market nowadays. Their simple construction, maintenance-free operation and high working efficiency result in low capital and operating costs. The combination of TSC with other system elements results in additional benefits. Preheating the combustion air of large-scale boilers results in the increase of boiler efficiency and thus the reduction of natural gas consumption and CO2 emission. Whether to choose TSC or heat recovery unit for a certain air conditioning system has to be investigated by examining efficiency-influencing factors of both systems. Besides solar air heating, transpired solar air collectors can reduce the cooling demand on a building. Roof ventilation and nocturnal radiant cooling are two alternatives, which are being presented in the current paper.

  • [1]

    Hollick J. C. (1994). Unglazed Solar Wall Air Heaters. Renewable Energy, 5. Part I. 415421.

  • [2]

    Eryener D. , Akhan H. (2012), Theoretical and Experimental Investigation of Perforated Solar Air Collector Coupled to a Capillary Radiant Heating System. In: Proceedings of 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics. Malta

    • Search Google Scholar
    • Export Citation
  • [3]

    Eryener D. , Akhan H. (2018), Building integrated solar air heating with waste heat utilisation. Energy Conversion and Management, 157, 136145.

    • Search Google Scholar
    • Export Citation
  • [4]

    Ameri M. , Gholampour M., Sheykh Samani M. (2014), Experimental study of performance of Photovoltaic–Thermal Unglazed Transpired Solar Collectors (PV/UTCs): Energy, exergy, and electrical-to-thermal rational approaches. Solar Energy 110, 636647.

    • Search Google Scholar
    • Export Citation
  • [5]

    Kutscher C. F. , Christensen C. B., Barker G. M. (1993), Unglazed transpired solar collectors: Heat loss theory. J. Sol. Energy Eng., 115(3), 182188.

    • Search Google Scholar
    • Export Citation
  • [6]

    RETScreen International Engineering & Cases Handbook: Solar Air Heating Project Analysis Chapter. National Resources Canada 2001–2004.

  • [7]

    Low Cost, High Performance Solar Air-Heating Systems Using Perforated Absorbers. Göttingen Utility Co-Generation Plant, Germany. IEA Solar Heating and Cooling Report No. SHC.T14.Air.I, pp. 40–55. September, 1999

  • [8]

    http://solarwall.com/modules/download_gallery/dlc.php?file=190

  • [9]

    http://solarwall.com/en/products/solarwall-air-heating/solarduct.php#prettyPhoto[gallery]/4/

  • [10]

    Horváth M. , Kassai-Szoó D., Csoknyai T. (2016), Solar energy potential of roofs on urban level based on building typology. Energy and Buildings, 111, 278289.

    • Search Google Scholar
    • Export Citation
  • [11]

    Kozubal E. , Deru M., Slayzak S., Norton P., Barker G., McClendon J. (2008), Evaluating the performance and economics of transpired solar collectors for commercial applications. In: Proceedings of ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Groove, CA

  • [12]

    http://solarwall.com/media/images-articles/SolarWallwith_Heat_Recovery_Systems.pdf

  • [13]

    Nyers J. , Pek Z. (2014), Mathematical model of heat pumps’ coaxial evaporator with distributed parameters. Acta Polytechnica Hungarica, 11(10), 4154.

    • Search Google Scholar
    • Export Citation
  • [14]

    Nyers J. (2016), COP and economic analysis of the heat recovery from waste water using heat pumps, International J. Acta Polytechnica Hungarica, 13(5), 135154.

    • Search Google Scholar
    • Export Citation
  • [15]

    Takács J. (2015), Enhance of the efficiency of exploitation of geothermal energy. International symposium, Subotica, Serbia, Proceedings EXPRES 2015, pp. 4649.

  • [16]

    Petráš D. , Lulkovičová O., Takács J., Füri B. (2005), Obnoviteľnézdroje energie na vykurovanie. In: Vykurovanie rodinných a bytových domov. Bratislava: Jaga, pp. 193217, ISBN 80-8076-012-8.

    • Search Google Scholar
    • Export Citation
  • [17]

    Petráš D. , Lulkovičová O., Takács J., Füri B. (2009), Obnoviteľné zdroje energie pre nízkoteplotné systémy. Bratislava: Jaga Group, s.r.o., 221 s. ISBN 978-80-8076-075-5

    • Search Google Scholar
    • Export Citation
The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • B. Nagy, Budapest University of Technology and Economics, Budapest, Hungary
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 9 7
May 2021 0 7 10
Jun 2021 0 8 10
Jul 2021 0 23 15
Aug 2021 0 17 8
Sep 2021 0 12 1
Oct 2021 0 0 0