View More View Less
  • 1 Varanasi and faculty member in U. P., J. M. I. New Delhi, India
Open access

This research article is focusing on the optimization of different welding process parameters which affect the weldability of stainless steel (AISI) 304H, Taguchi technique was used to optimize the welding parameters and the fracture mode characterization was studied. A number of experiments have been conducted. L9 orthogonal array (OA) (3×3) was applied. Analysis of variance ( ANOVA) and signal to noise ratio (SNR) was applied to determine the effect of different welding parameters such as welding current, wire feed speed and gas flow rate on mechanical, microstructure properties of SS304H. Ultimate tensile strength (UTS), toughness, microhardness (VHN), and mode of fracture was examined to determine weldability of AISI 304H and it was observed from results that welding voltage has major impact whereas gas flow rate has minor impact on ultimate tensile strength of the welded joints. Optimum process parameters were found to be 23 V, 350 IPM travel speed of wire and 15 l/min gas flow rate for tensile strength and mode of fracture was ductile fracture for tensile test specimen.

  • [1]

    Rizvi S. A. , Tewari S. P., Wajahat A. (2009), Advanced Welding Technology. Kataria & Sons (P) Ltd., New Delhi, p. 45

  • [2]

    Ghazvinlo H. R. , Honarbakhsh A., Shadfar N. (2010), Effect of arc voltage, welding current and welding speed on fatigue life, impact energy and bead penetration of AA6061 joints produced by robotic MIG welding. Indian Journal of Science and Technology, 3(2).

    • Search Google Scholar
    • Export Citation
  • [3]

    Ramazani A. , Mukherjee K., Abdurakhmanov A., Prahl U., Schleser M., Reisgen U., Bleck W. (2014), Micromacro- characterization and modeling of mechanical properties of gas metal arc welded (GMAW) DP600 steel. Material Science & Engineering A, 589, 114.

    • Search Google Scholar
    • Export Citation
  • [4]

    Folkhard E. (1988), Welding Metallurgy of Stainless Steels. Springer-Verlag, New York.

  • [5]

    Dinesh Mohan Arya , Vedansh Chaturvedi, Jyoti Vimal (2016), Parametric optimization of MIG process parameters using Taguchi and Grey Taguchi analysis. International Journal of Research in Engineering and Applied Sciences, 3(6), 117.

    • Search Google Scholar
    • Export Citation
  • [6]

    Nabendu Ghosh , Pradip Kumar Pal, Goutam Nandi (2016), Parametric optimization of MIG welding on 316L austenitic stainless steel by Grey-based Taguchi method. Procedia Technology, 25, 10381048.

    • Search Google Scholar
    • Export Citation
  • [7]

    Doniavi A. , Hosseini A., Ranjbary G. (2016), Prediction and optimization of mechanical properties of St52 in gas metal arc weld using response surface methodology and ANOVA, International Journal of Engineering Transactions C: Aspects, 9(9), 13071313.

    • Search Google Scholar
    • Export Citation
  • [8]

    Abhishek Prakash , Raj Kumar Bag, Papin Ohdar, Siva Sankar Raju (2016), Parametric optimization of metal inert gas welding by using Taguchi approach. IJRET, 5(2), 176181.

    • Search Google Scholar
    • Export Citation
  • [9]

    Bayazida S. M. , Farhangia H., Ghahramani A. (2015), Investigation of friction stir welding parameters of 6063–7075 aluminum alloys by Taguchi method. Procedia Materials Science, 11, 611.

    • Search Google Scholar
    • Export Citation
  • [10]

    Saurav Datta , Asish Bandyopadhyay, Pradip Kumar Pal (2008), Grey-based Taguchi method for optimization of bead geometry in submerged arc bead-on-plate welding. Int. J. Adv. Manuf. Technol., 39, 11361143.

    • Search Google Scholar
    • Export Citation
  • [11]

    Diganta Kalita , Barua P. B. (2015), Taguchi optimization of MIG welding parameters affecting tensile strength of C20 welds, IJETT, 26, 4349.

    • Search Google Scholar
    • Export Citation
  • [12]

    ASTM E8/E8M (2013), 11. Standard Test Methods for Tension Testing of Metallic Materials. ASM International

  • [13]

    Sagar R. , Chikhale, Kishor P. Kolhe, Pawan Kumar (2016), Prediction of mechanical properties of Al alloy 6061-T6 by using GMAW. International Journal of Current Engineering and Technology, 5, 300306.

    • Search Google Scholar
    • Export Citation
  • [14]

    Rizvi S. A. , Tewari S. P., Wajahat Ali (2016), Application of Taguchi technique to optimize the process parameters of MIG wedging on IS2062 steel. International Journal on Emerging Trends in Mechanical & Production Engineering, 2(2) 111.

    • Search Google Scholar
    • Export Citation
  • [15]

    Ganjigatti J. P. , Pratihar D. K., Roy Choudhury A. (2008), Modeling of the MIG welding process using statistical approaches. Int. J. Adv. Manuf. Technology, 35, 11661190.

    • Search Google Scholar
    • Export Citation
  • [16]

    Liu B. X. , Yin F. X., Dai X. L., He J. N., Fang W., Chena C. X., Dong Y. C. (2017), The tensile behaviors and fracture characteristics of stainless steel clad plates with different interfacial status. Materials Science & Engineering A, 679, 172182.

    • Search Google Scholar
    • Export Citation
  • [17]

    Ramesh Kumar Buddu , Chauhan N., Raole P. M., Harshad Natu (2015), Studies on mechanical properties, microstructure and fracture morphology details of laser beam welded thick SS304L plates for fusion reactor applications. Fusion Engineering and Design 95, 3443.

    • Search Google Scholar
    • Export Citation
  • [18]

    Hasanzadeh R. , Azdast T., Doniavi A., Babazadeh S., Lee R. E., Daryadel M., Shishavan S. M. (2017), Welding properties of polymeric nanocomposite parts containing alumina nanoparticles in friction stir welding process. International Journal of Engineering Transactions A: Basics, 30(1), 143151.

    • Search Google Scholar
    • Export Citation
  • [19]

    Choudhary S. , Duhan R. (2015), Effect of activated flux on properties of SS 304 using TIG welding. International Journal of Engineering Transactions B: Applications, 28(2), 290295.

    • Search Google Scholar
    • Export Citation
  • [20]

    Saadat Ali Rizvi , Tewari S. P. (2017), Effect of different welding parameters on the mechanical and microstructural properties of stainless steel 304H welded joints. International Journal of Engineering Transactions A: Basics, 30(10), 15101516.

    • Search Google Scholar
    • Export Citation
  • [21]

    Singh R. , Saadat Ali Rizvi, Tewari S. P. (2017), Effect of friction stir welding on the tensile properties of AA6063 under different conditions. International Journal of Engineering Transactions A: Basics, 30(4), 597603.

    • Search Google Scholar
    • Export Citation
  • [22]

    Saadat Ali Rizvi, S. P. Tewari (2018), Optimization of gas metal arc welding parameters of SS304 austenatic steel by Taguchi–Grey relational analysis. Journal of Computational and Applied Research in Mechanical Engineering, accepted for publishing in 10(11).

    • Search Google Scholar
    • Export Citation
  • [23]

    Shanti Lal Meena , Ravi Butola, Qasim Murtaza, Hardik Jayantilal, Niranjan M. S. (2017), Metallurgical investigations of microstructure and microhardness across the various zones in synergic MIG welding of stainless steel. Materials Today: Proceedings, 4, 82408249.

    • Search Google Scholar
    • Export Citation
  • [24]

    Rong Chen , Ping Jiang, Xinyu Shao, Gaoyang Mi, Chunming Wang, Shaoning Geng, Song Gao, Longchao Cao (2017), Improvement of low-temperature impact toughness for 304 weld joint produced by laser-MIG hybrid welding under magnetic fi eld. Journal of Materials Processing Tech., 247, 306314.

    • Search Google Scholar
    • Export Citation
  • [25]

    Hilders O. A. , Santana M. G. (1988), Toughness and fractography of austenitic type 304 stainless steel with sensitization treatments at 973 K. Metallography, 21, 151164.

    • Search Google Scholar
    • Export Citation
  • [26]

    Singh A. , Cooper D. E., Blundell N. J., Pratihar D. K., Gibbons G. J. (2014), Modelling of weld-bead geometry and hardness profi le in laser welding of plain carbon steel using neural networks and genetic algorithms. Int. J. Comput. Integr. Manuf., 27(7), 656674.

    • Search Google Scholar
    • Export Citation
  • [27]

    Sathiya P. , Panneerselvam K., Soundararajan R. (2012), Optimal design for laser beam butt welding process parameter using artifi cial neural networks and genetic algorithm for super austenitic stainless steel. Opt. Laser Technol., 44(6), 19051914.

    • Search Google Scholar
    • Export Citation
  • [28]

    Katherasan D. , Elias J. V., Sathiya P., Haq A. N. (2014), Simulation and parameter optimization of flux cored arc welding using artifi cial neural network and particle swarm optimization algorithm. J. Intell. Manuf., 25(1), 6776.

    • Search Google Scholar
    • Export Citation
  • [29]

    Chaki S. , Shanmugarajan B., Ghosal S., Padmanabham G. (2015), Application of integrated soft computing techniques for optimisation of hybrid CO2 laser–MIG welding process. Appl. Soft Comput., 30, 365374.

    • Search Google Scholar
    • Export Citation
The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)