View More View Less
  • 1 University of Debrecen, Hungary
  • | 2 Ryerson University, Toronto, ON, Canada
Open access

The development of high performance insulating materials incorporating nanotechnologies has enabled considerable decrease in the effective thermal conductivity. Besides the use of conventional insulating materials, such as mineral fibers, the adoption of new nano-technological materials such as aerogel, vacuum insulation panels, graphite expanded polystyrene, is growing. In order to reduce the thermal conductivity of polystyrene insulation materials, during the manufacturing, nano/micro-sized graphite particles are added to the melt of the polystyrene grains. The mixing of graphite flakes into the polystyrene mould further reduces the lambda value, since graphite parts significantly reflect the radiant part of the thermal energy. In this study, laboratory tests carried out on graphite insulation materials are presented. Firstly, thermal conductivity results are described, and then sorption kinetic curves at high moisture content levels are shown. The moisture up-taking behaviour of the materials was investigated with a climatic chamber where the relative humidity was 90% at 293 K temperature. Finally, calorific values of the samples are presented after combusting in a bomb calorimeter.

  • [1]

    Kalmár F. (2002), Energy analysis of building thermal insulation. In: 11th Conference for Building Physics, 2002 Sept 26–30, Dresden, Germany, pp. 103112.

    • Search Google Scholar
    • Export Citation
  • [2]

    Lakatos Á. , Kalmár F. (2013), Analysis of water sorption and thermal conductivity of expanded polystyrene insulation materials. Building Services Engineering Research and Technology, 34, 407416.

    • Search Google Scholar
    • Export Citation
  • [3]

    Lakatos Á. , Kalmár F. (2013), Investigation of thickness and density dependence of thermal conductivity of expanded polystyrene insulation materials. Materials and Structures, 46, 11011105.

    • Search Google Scholar
    • Export Citation
  • [4]

    Schiavoni S. , D’Alessandro F., Bianchi F., Asdrubali F. (2016), Insulation materials for the building sector: A review and comparative analysis. Renewable and Sustainable Energy Reviews, 62, 9881011.

    • Search Google Scholar
    • Export Citation
  • [5]

    Berardi U. , Naldi M. (2017), The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance. Energy and Buildings, 144, 262275.

    • Search Google Scholar
    • Export Citation
  • [6]

    Ferkl P. , Pokorny R., Bobak M., Kosek J. (2013), Heat transfer in one-dimensional micro- and nano-cellular foams. Chemical Engineering Science, 97, 5058.

    • Search Google Scholar
    • Export Citation
  • [7]

    Tran M. P. , Gong P., Detrembleur C., Thomassin J. M., Buahom P., Saniei M., Kenig S., Parka C. B., Lee S. E. (2016), Reducing Thermal Conductivity of Polymeric Foams with High Volume Expansion Made From Polystyrene/Expanded Graphite. SPE ANTE, 18701882.

    • Search Google Scholar
    • Export Citation
  • [8]

    Koru M. (2016), Determination of thermal conductivity of closed-cell insulation materials that depend on temperature and density. Arabian Journal for Science and Engineering, 41, 43374346.

    • Search Google Scholar
    • Export Citation
  • [9]

    Cai S. , Zhang B., Cremaschi L. (2017), Review of moisture behavior and thermal performance of polystyrene insulation in building applications. Building and Environment, 123, 5065.

    • Search Google Scholar
    • Export Citation
  • [10]

    Gnip I. Y. , Kersulis V., Vejelis S., Vaitkus S. (2006), Water absorption of expanded polystyrene boards. Polymer Testing, 25, 635641.

  • [11]

    Nosrati R. H. , Berardi U. (2018), Hygrothermal characteristics of aerogel-enhanced insulating materials under different humidity and temperature conditions. Energy and Buildings, 158, 698711.

    • Search Google Scholar
    • Export Citation
  • [12]

    Berardi U. , Nosrati R. H. (2018), Long-term behaviour of aerogel-enhanced insulating materials under different aging laboratory conditions. Energy, 147, 11881202.

    • Search Google Scholar
    • Export Citation
  • [13]

    ISO 12571 (2013), Hygrothermal performance of building materials and products – Determination of hygroscopic sorption properties, Part B – Climatic chamber method.

  • [14]

    ISO 15148 (2002), Hygrothermal performance of building materials and products – Determination of water absorption coefficient by partial immersion.

  • [15]

    Mukhopadhyaya P. , Kumaran K., Normandin N., Goudreau P. (2002), Effect of surface temperature on water absorption coefficient of building materials. Journal of Thermal Envelope and Building Science, 26(2), 179195.

    • Search Google Scholar
    • Export Citation
  • [16]

    Brunauer S. , Deming L. S., Deming W. E., Teller E. (1940), On a theory of the van der Waals adsorption of gases. Journal of American Chemical Society, 62, 17231732.

    • Search Google Scholar
    • Export Citation
  • [17]

    ISO 10456, Building materials and products – Hygrothermal properties – Tabulated design values and procedures for determining declared and design thermal values.

  • [18]

    Lakatos Á . (2017), Thermal conductivity of insulations approached from a new aspect. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-017-6686-5.

    • Search Google Scholar
    • Export Citation
  • [19]

    Munoz D. F. , Anderson B., Cejudo-Lópeza J. M., Carrillo-Andrés A. (2010), Uncertainty in the thermal conductivity of insulation materials. Energy and Buildings, 42(11), 21592168.

    • Search Google Scholar
    • Export Citation
The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • B. Nagy, Budapest University of Technology and Economics, Budapest, Hungary
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 13 12
Jul 2021 0 15 9
Aug 2021 0 26 16
Sep 2021 0 22 20
Oct 2021 0 16 27
Nov 2021 0 10 16
Dec 2021 0 1 0